GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Abstract

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities (timing, duration, threshold, eventually trajectory and memory effects). Therefore, understanding the effect of the temporal variation of these factors on grapevine physiology would be of strategic benefit in viticulture, for example in establishing yield potential. Today many estates own data that can support temporal analyses, while the emergence of precision viticulture allows management at higher spatial and temporal resolutions. These data are a great opportunity to advance knowledge about the dynamics of grapevine physiology and production, and promote an improved precision of vineyard practices. The exploitation of these data needs analytical methods that fully explore time series data. However, current methods tend to only focus on a few key phenological stages or time steps. Such approaches do not fully address the potential information captured by continuous temporal measurements because they introduce limitations : i) they rely on choices of variables and timing, ii) they often require suppressing data or analysing only parts of a time series and iii) data correlation over time is not taken into account. A new approach is explored in this paper, using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS method). The BLiSS method overcomes the mentioned limitations and leads to a more complete and objective analysis of time series data. Based on the identification of climatic periods affecting yield, the objective of the study is to evaluate the potential of the BLiSS method.

Materials and method ‐ Minimum and maximum daily temperatures during the year preceding the harvest year were regressed against the number of clusters per vine using the BLiSS method on one block of a commercial vineyard in the Bordeaux region over 11 years. The reliability and pertinence of the BLiSS method to reveal already reported, ignored or underestimated temperature effects on the number of clusters per vine are tested by comparison with literature results.

Results ‐ The BLiSS method allowed the detection of periods when temperature influenced the number of clusters per vine during the year preceding the harvest year. Some of the detected periods of influence had already been reported in literature. However, the BLiSS outcomes suggested that some of those known periods may have a different duration or several effects, thus challenging actual knowledge. Finally, some new periods of influence were identified by the BLiSS method. These results confirmed the potential of the BLiSS method to undertake a fuller exploration of time series data in the case of climate influence on grape yield.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Cécile LAURENT (1,2,3), Meïli BARAGATTI (4), James TAYLOR (1), Bruno TISSEYRE (1), Aurélie METAY (2), Thibaut SCHOLASCH (3)

(1) ITAP, Univ. Montpellier, Montpellier SupAgro, Irstea, France
(2) SYSTEM, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRA, Montpellier SupAgro, France
(3) Fruition Sciences, Montpellier, France
(4) MISTEA, Univ Montpellier Montpellier SupAgro, INRA, France

Contact the author

Keywords

climate, functional analysis, temporal variability, cluster number

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evaluation of clonal variability of phenolic compounds in Vitis vinifera L. cv. Trnjak crni grown in Croatia

Context and purpose of the study. Croatia has rich grapevine genetic resources with more than 130 native varieties preserved.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines

AIM Aiming to explore the possibility of shortening red winemaking maceration times (1,2), this study presents the effect of the application of high-power ultrasounds to crushed grapes, at winery-scale, on the content of varietal volatile compounds (free and glycosidically-bound) in musts and on the overall aroma of wines.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.