GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Abstract

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities (timing, duration, threshold, eventually trajectory and memory effects). Therefore, understanding the effect of the temporal variation of these factors on grapevine physiology would be of strategic benefit in viticulture, for example in establishing yield potential. Today many estates own data that can support temporal analyses, while the emergence of precision viticulture allows management at higher spatial and temporal resolutions. These data are a great opportunity to advance knowledge about the dynamics of grapevine physiology and production, and promote an improved precision of vineyard practices. The exploitation of these data needs analytical methods that fully explore time series data. However, current methods tend to only focus on a few key phenological stages or time steps. Such approaches do not fully address the potential information captured by continuous temporal measurements because they introduce limitations : i) they rely on choices of variables and timing, ii) they often require suppressing data or analysing only parts of a time series and iii) data correlation over time is not taken into account. A new approach is explored in this paper, using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS method). The BLiSS method overcomes the mentioned limitations and leads to a more complete and objective analysis of time series data. Based on the identification of climatic periods affecting yield, the objective of the study is to evaluate the potential of the BLiSS method.

Materials and method ‐ Minimum and maximum daily temperatures during the year preceding the harvest year were regressed against the number of clusters per vine using the BLiSS method on one block of a commercial vineyard in the Bordeaux region over 11 years. The reliability and pertinence of the BLiSS method to reveal already reported, ignored or underestimated temperature effects on the number of clusters per vine are tested by comparison with literature results.

Results ‐ The BLiSS method allowed the detection of periods when temperature influenced the number of clusters per vine during the year preceding the harvest year. Some of the detected periods of influence had already been reported in literature. However, the BLiSS outcomes suggested that some of those known periods may have a different duration or several effects, thus challenging actual knowledge. Finally, some new periods of influence were identified by the BLiSS method. These results confirmed the potential of the BLiSS method to undertake a fuller exploration of time series data in the case of climate influence on grape yield.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Cécile LAURENT (1,2,3), Meïli BARAGATTI (4), James TAYLOR (1), Bruno TISSEYRE (1), Aurélie METAY (2), Thibaut SCHOLASCH (3)

(1) ITAP, Univ. Montpellier, Montpellier SupAgro, Irstea, France
(2) SYSTEM, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRA, Montpellier SupAgro, France
(3) Fruition Sciences, Montpellier, France
(4) MISTEA, Univ Montpellier Montpellier SupAgro, INRA, France

Contact the author

Keywords

climate, functional analysis, temporal variability, cluster number

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Physiological response to drought and heat stress in the leaves of table grape varieties

Increasingly pronounced climate changes, including prolonged drought periods, pose a significant challenge to the cultivation of table grape varieties.

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.

Portable NIR spectroscopy for nutrient profiling in rootstock and scion material: enhancing decision-making in the grafting industry

The success of grafting in viticulture is deeply influenced by the nutrient composition of both rootstock and scion
materials. Key components such as nitrogen and carbohydrates play a crucial role in graft compatibility, establishment,
and overall plant vigor [1].

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing.

Making sense of a sense of place: precision viticulture approaches to the analysis of terroir at different scales

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used…