GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Abstract

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities (timing, duration, threshold, eventually trajectory and memory effects). Therefore, understanding the effect of the temporal variation of these factors on grapevine physiology would be of strategic benefit in viticulture, for example in establishing yield potential. Today many estates own data that can support temporal analyses, while the emergence of precision viticulture allows management at higher spatial and temporal resolutions. These data are a great opportunity to advance knowledge about the dynamics of grapevine physiology and production, and promote an improved precision of vineyard practices. The exploitation of these data needs analytical methods that fully explore time series data. However, current methods tend to only focus on a few key phenological stages or time steps. Such approaches do not fully address the potential information captured by continuous temporal measurements because they introduce limitations : i) they rely on choices of variables and timing, ii) they often require suppressing data or analysing only parts of a time series and iii) data correlation over time is not taken into account. A new approach is explored in this paper, using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS method). The BLiSS method overcomes the mentioned limitations and leads to a more complete and objective analysis of time series data. Based on the identification of climatic periods affecting yield, the objective of the study is to evaluate the potential of the BLiSS method.

Materials and method ‐ Minimum and maximum daily temperatures during the year preceding the harvest year were regressed against the number of clusters per vine using the BLiSS method on one block of a commercial vineyard in the Bordeaux region over 11 years. The reliability and pertinence of the BLiSS method to reveal already reported, ignored or underestimated temperature effects on the number of clusters per vine are tested by comparison with literature results.

Results ‐ The BLiSS method allowed the detection of periods when temperature influenced the number of clusters per vine during the year preceding the harvest year. Some of the detected periods of influence had already been reported in literature. However, the BLiSS outcomes suggested that some of those known periods may have a different duration or several effects, thus challenging actual knowledge. Finally, some new periods of influence were identified by the BLiSS method. These results confirmed the potential of the BLiSS method to undertake a fuller exploration of time series data in the case of climate influence on grape yield.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Cécile LAURENT (1,2,3), Meïli BARAGATTI (4), James TAYLOR (1), Bruno TISSEYRE (1), Aurélie METAY (2), Thibaut SCHOLASCH (3)

(1) ITAP, Univ. Montpellier, Montpellier SupAgro, Irstea, France
(2) SYSTEM, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRA, Montpellier SupAgro, France
(3) Fruition Sciences, Montpellier, France
(4) MISTEA, Univ Montpellier Montpellier SupAgro, INRA, France

Contact the author

Keywords

climate, functional analysis, temporal variability, cluster number

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

The wine microbial consortium: a real terroir characteristic

Yeast, bacteria, species and strains play a key role in the winemaking process by producing metabolites which determine the sensorial qualities of wine. Therefore microbial population numeration, species identification and strains discrimination from berry surface at harvest to storage in bottle are fundamental.

Longevity and moderate wine consumption – can guidelines provide practical advice?

Conflicting messages about the consumption of alcoholic beverages – including wine – continue to dominate the media, causing increasing uncertainty among consumers and health professionals.

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.