GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Abstract

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities (timing, duration, threshold, eventually trajectory and memory effects). Therefore, understanding the effect of the temporal variation of these factors on grapevine physiology would be of strategic benefit in viticulture, for example in establishing yield potential. Today many estates own data that can support temporal analyses, while the emergence of precision viticulture allows management at higher spatial and temporal resolutions. These data are a great opportunity to advance knowledge about the dynamics of grapevine physiology and production, and promote an improved precision of vineyard practices. The exploitation of these data needs analytical methods that fully explore time series data. However, current methods tend to only focus on a few key phenological stages or time steps. Such approaches do not fully address the potential information captured by continuous temporal measurements because they introduce limitations : i) they rely on choices of variables and timing, ii) they often require suppressing data or analysing only parts of a time series and iii) data correlation over time is not taken into account. A new approach is explored in this paper, using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS method). The BLiSS method overcomes the mentioned limitations and leads to a more complete and objective analysis of time series data. Based on the identification of climatic periods affecting yield, the objective of the study is to evaluate the potential of the BLiSS method.

Materials and method ‐ Minimum and maximum daily temperatures during the year preceding the harvest year were regressed against the number of clusters per vine using the BLiSS method on one block of a commercial vineyard in the Bordeaux region over 11 years. The reliability and pertinence of the BLiSS method to reveal already reported, ignored or underestimated temperature effects on the number of clusters per vine are tested by comparison with literature results.

Results ‐ The BLiSS method allowed the detection of periods when temperature influenced the number of clusters per vine during the year preceding the harvest year. Some of the detected periods of influence had already been reported in literature. However, the BLiSS outcomes suggested that some of those known periods may have a different duration or several effects, thus challenging actual knowledge. Finally, some new periods of influence were identified by the BLiSS method. These results confirmed the potential of the BLiSS method to undertake a fuller exploration of time series data in the case of climate influence on grape yield.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Cécile LAURENT (1,2,3), Meïli BARAGATTI (4), James TAYLOR (1), Bruno TISSEYRE (1), Aurélie METAY (2), Thibaut SCHOLASCH (3)

(1) ITAP, Univ. Montpellier, Montpellier SupAgro, Irstea, France
(2) SYSTEM, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRA, Montpellier SupAgro, France
(3) Fruition Sciences, Montpellier, France
(4) MISTEA, Univ Montpellier Montpellier SupAgro, INRA, France

Contact the author

Keywords

climate, functional analysis, temporal variability, cluster number

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.

Scalable asymptomatic grapevine leafroll virus complex-3 detection through integrated airborne imaging spectroscopy, autonomous robotics, and cloud computing

The past three decades of terrestrial remote sensing research have delivered unprecedented insights into our fundamental ability to detect, quantify, and differentiate plant disease (Gold 2021). However, much of our fundamental knowledge in this domain has come from studies in non-agricultural systems and until recently, most agricultural studies, when extant, have focused on tree crops where canopy closure and large plot and plant size facilitate stress detection at low spatial resolution. Recent engineering innovations and advancements in constellation architecture design have refined the accuracy and scalability of airborne and spaceborne sensing platforms, enabling us to monitor diverse specialty crops, including grapevine, planted in smaller, spatially varied fields.

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France.

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.