Macrowine 2021
IVES 9 IVES Conference Series 9 Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

Abstract

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines. Thirty-eight wines with a priori different levels of GAH were submitted to sensory analysis by a panel of 25 wine experts. Thirteen attributes and two multidimensional terms (preference and GAH) were rated. Results showed that GAH concept was negatively correlated to preference and positively to aroma (vegetal) and in-mouth terms (astringency). Four wines with different levels of GAH were fractionated by solid-phase extraction and semipreparative liquid chromatography. Six odorless fractions (F1-F6) were isolated for each wine and further submitted to sensory characterization. Results showed that all fractions, except for F3 shared sensory properties for the four wines. F1 and F2 were characterized by attributes such as burning, hot and bitter. F4 and F6 were mainly sweet, watery, silky, fleshy, oily and greasy and F5 dry, coarse and granular. Differently, fraction F3 obtained from wines with high GAH was significantly different from wines with low GAH. Wines with high score for GAH was mainly dry, burning, sour and bitter, while for wines low in GAH was dusty and watery. These results are promising and would suggest that the developed methodology have succeed in isolating the group of compounds potentially involved in the green, aggressive and hard character of wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Purificación Fernández-Zurba*, Blanca Lacau, Cristina Barón, Dominique Valentin, Jesús Astrain, Jose Avizcuri, Maria Pilar Saenz-Navaja, Vicente Ferreira

*Universidad de La Rioja

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.