Macrowine 2021
IVES 9 IVES Conference Series 9 Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

Abstract

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha. This study aims to evaluate the enological potential of these minor grape cultivars. Regarding anthocyanins, the three studied cultivars showed the occurrence of the 3-glucosides of the common grape anthocyanidins, with the prevalence of malvidin-based anthocyanins, followed by peonidin derivatives. However, Garnacho showed a characteristic profile in which anthocyanins based on peonidin and malvidin accounted for similar proportions. Among the acylated anthocyanins, the coumaroyl derivatives dominated over the acetylated ones and some minor caffeoyl derivatives were also found. In addition, minor anthocyanidin 3,5-diglucosides were detected, mainly malvidin 3,5-diglucoside, although its coumaroyl derivative was also found in Tinto Fragoso and peonidin 3,5-diglucoside in the case of Garnacho. Tinto Fragoso showed the highest content of anthocyanins in both years. Flavonol profiles were in agreement with those previously described for V. vinifera grapes: the 3-glucosides, the 3-galactosides and the 3-glucuronides of the six common aglycones, namely kaempferol, quercetin, isorhamnetin, myricetin, laricitrin and syringetin. Moreover, high resolution MS and MS/MS evidence of the occurrence of dihexosides of myricetin was found in grapes. The qualitative content of HCADs showed no differences according to grape cultivar and was dominated by caftaric acid. The pulp accumulated most HCADs. The content of PAs in grape skins does not vary according to grape variety and season year, around 8-13 mg/g skin (as catechin). In contrast, the content of PAs in seeds was lower in Moribel (53-58 mg/g, vs. 75-79 mg/g in Garnacho and 81-86 mg/g in Tinto Fragoso), but no differences were found according to season year. The mean degree of polymerization was similar in the three cultivars and two season years: 9-10 for skin PAs and 6-7 for seed PAs. The percentage of prodelphinidins in skin PAs ranged within 17-18% for the three cultivars, whereas the percentage of galloylation in seed PAs was lower in Moribel (13%, vs. 16-17% in the other two cultivars). Finally, the season year of 2014 was characterized by adverse climatic conditions with regards to the development of grapes and the contents of anthocyanins and flavonols were affected showing lower concentrations for the three grape cultivars.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Isidro Hermosín-Gutíerrez*, Esteban García-Romero, Jesús Martínez-Gascueña, José Luís Chacón-Vozmedian, José Pérez-Navarro, Pedro Izquierdo-Cañas, Sergio Gómez-Alonso

*Universidad de Castilla-La Mancha

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines.