Macrowine 2021
IVES 9 IVES Conference Series 9 Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

Abstract

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha. This study aims to evaluate the enological potential of these minor grape cultivars. Regarding anthocyanins, the three studied cultivars showed the occurrence of the 3-glucosides of the common grape anthocyanidins, with the prevalence of malvidin-based anthocyanins, followed by peonidin derivatives. However, Garnacho showed a characteristic profile in which anthocyanins based on peonidin and malvidin accounted for similar proportions. Among the acylated anthocyanins, the coumaroyl derivatives dominated over the acetylated ones and some minor caffeoyl derivatives were also found. In addition, minor anthocyanidin 3,5-diglucosides were detected, mainly malvidin 3,5-diglucoside, although its coumaroyl derivative was also found in Tinto Fragoso and peonidin 3,5-diglucoside in the case of Garnacho. Tinto Fragoso showed the highest content of anthocyanins in both years. Flavonol profiles were in agreement with those previously described for V. vinifera grapes: the 3-glucosides, the 3-galactosides and the 3-glucuronides of the six common aglycones, namely kaempferol, quercetin, isorhamnetin, myricetin, laricitrin and syringetin. Moreover, high resolution MS and MS/MS evidence of the occurrence of dihexosides of myricetin was found in grapes. The qualitative content of HCADs showed no differences according to grape cultivar and was dominated by caftaric acid. The pulp accumulated most HCADs. The content of PAs in grape skins does not vary according to grape variety and season year, around 8-13 mg/g skin (as catechin). In contrast, the content of PAs in seeds was lower in Moribel (53-58 mg/g, vs. 75-79 mg/g in Garnacho and 81-86 mg/g in Tinto Fragoso), but no differences were found according to season year. The mean degree of polymerization was similar in the three cultivars and two season years: 9-10 for skin PAs and 6-7 for seed PAs. The percentage of prodelphinidins in skin PAs ranged within 17-18% for the three cultivars, whereas the percentage of galloylation in seed PAs was lower in Moribel (13%, vs. 16-17% in the other two cultivars). Finally, the season year of 2014 was characterized by adverse climatic conditions with regards to the development of grapes and the contents of anthocyanins and flavonols were affected showing lower concentrations for the three grape cultivars.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Isidro Hermosín-Gutíerrez*, Esteban García-Romero, Jesús Martínez-Gascueña, José Luís Chacón-Vozmedian, José Pérez-Navarro, Pedro Izquierdo-Cañas, Sergio Gómez-Alonso

*Universidad de Castilla-La Mancha

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.