Macrowine 2021
IVES 9 IVES Conference Series 9 Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

Abstract

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha. This study aims to evaluate the enological potential of these minor grape cultivars. Regarding anthocyanins, the three studied cultivars showed the occurrence of the 3-glucosides of the common grape anthocyanidins, with the prevalence of malvidin-based anthocyanins, followed by peonidin derivatives. However, Garnacho showed a characteristic profile in which anthocyanins based on peonidin and malvidin accounted for similar proportions. Among the acylated anthocyanins, the coumaroyl derivatives dominated over the acetylated ones and some minor caffeoyl derivatives were also found. In addition, minor anthocyanidin 3,5-diglucosides were detected, mainly malvidin 3,5-diglucoside, although its coumaroyl derivative was also found in Tinto Fragoso and peonidin 3,5-diglucoside in the case of Garnacho. Tinto Fragoso showed the highest content of anthocyanins in both years. Flavonol profiles were in agreement with those previously described for V. vinifera grapes: the 3-glucosides, the 3-galactosides and the 3-glucuronides of the six common aglycones, namely kaempferol, quercetin, isorhamnetin, myricetin, laricitrin and syringetin. Moreover, high resolution MS and MS/MS evidence of the occurrence of dihexosides of myricetin was found in grapes. The qualitative content of HCADs showed no differences according to grape cultivar and was dominated by caftaric acid. The pulp accumulated most HCADs. The content of PAs in grape skins does not vary according to grape variety and season year, around 8-13 mg/g skin (as catechin). In contrast, the content of PAs in seeds was lower in Moribel (53-58 mg/g, vs. 75-79 mg/g in Garnacho and 81-86 mg/g in Tinto Fragoso), but no differences were found according to season year. The mean degree of polymerization was similar in the three cultivars and two season years: 9-10 for skin PAs and 6-7 for seed PAs. The percentage of prodelphinidins in skin PAs ranged within 17-18% for the three cultivars, whereas the percentage of galloylation in seed PAs was lower in Moribel (13%, vs. 16-17% in the other two cultivars). Finally, the season year of 2014 was characterized by adverse climatic conditions with regards to the development of grapes and the contents of anthocyanins and flavonols were affected showing lower concentrations for the three grape cultivars.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Isidro Hermosín-Gutíerrez*, Esteban García-Romero, Jesús Martínez-Gascueña, José Luís Chacón-Vozmedian, José Pérez-Navarro, Pedro Izquierdo-Cañas, Sergio Gómez-Alonso

*Universidad de Castilla-La Mancha

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.