Macrowine 2021
IVES 9 IVES Conference Series 9 Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Abstract

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-UPLC/FTMS). All the analyses were performed in grape juice. In agreement with Miklosy & Kerényi (2004) and Sarrazin (2007), the quantification of lactone compounds has confirmed the important role of B. cinerea in increasing their content during the over-ripening of the grapes. However, our observations indicated an evolution that is not similar and depends on the molecular structure of lactones. While the concentrations of saturated lactones i.e. γ-nonalactone continued to increase in the last stage (pourri roti + 15 days), the contents of unsaturated lactones i.e. 2-nonen-4-olide and massoia lactone reached their maximum at the “pourri roti” stage. Moreover, this study also showed differences in the concentration of lactones between the different vintages (2012, 2014 & 2015) and between the vineyards plots, with always higher content for both saturated and unsaturated lactones on the peyrosol plot. Given the sensory impact of 2-nonen-4-olide and massoia lactone, these could be considered as molecular markers for the quality of the noble rot sweet wines. Concerning the quantification of the 3-sulfanylhexan-1-ol precursors, the results showed differences depending on the vintage, the stage of B. cinerea maturation and the vineyard plot. First, depending on the stage of noble rot development, increasing content of precursors is associated with the impact of B. cinerea as previously observed by Thibon et al. (2009). Regarding the vintage, higher levels of S-conjugates precursors were observed in 2014 in comparison with 2012 vintage. Finally, as for lactones, the level of S-conjugates precursors seems to be dependent on the nature of soil, with differences between the vineyards plots and higher content on the peyrosol plot. Keywords: B. cinerea, sweet wines, lactones, S-conjugates aroma precursors, aroma.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Panagiotis Stamatopoulos*, Cécile Thibon, Philippe Darriet, Francis Mayeur, Sandrine Garbay

*Université de Bordeaux, ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).