Macrowine 2021
IVES 9 IVES Conference Series 9 Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Abstract

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-UPLC/FTMS). All the analyses were performed in grape juice. In agreement with Miklosy & Kerényi (2004) and Sarrazin (2007), the quantification of lactone compounds has confirmed the important role of B. cinerea in increasing their content during the over-ripening of the grapes. However, our observations indicated an evolution that is not similar and depends on the molecular structure of lactones. While the concentrations of saturated lactones i.e. γ-nonalactone continued to increase in the last stage (pourri roti + 15 days), the contents of unsaturated lactones i.e. 2-nonen-4-olide and massoia lactone reached their maximum at the “pourri roti” stage. Moreover, this study also showed differences in the concentration of lactones between the different vintages (2012, 2014 & 2015) and between the vineyards plots, with always higher content for both saturated and unsaturated lactones on the peyrosol plot. Given the sensory impact of 2-nonen-4-olide and massoia lactone, these could be considered as molecular markers for the quality of the noble rot sweet wines. Concerning the quantification of the 3-sulfanylhexan-1-ol precursors, the results showed differences depending on the vintage, the stage of B. cinerea maturation and the vineyard plot. First, depending on the stage of noble rot development, increasing content of precursors is associated with the impact of B. cinerea as previously observed by Thibon et al. (2009). Regarding the vintage, higher levels of S-conjugates precursors were observed in 2014 in comparison with 2012 vintage. Finally, as for lactones, the level of S-conjugates precursors seems to be dependent on the nature of soil, with differences between the vineyards plots and higher content on the peyrosol plot. Keywords: B. cinerea, sweet wines, lactones, S-conjugates aroma precursors, aroma.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Panagiotis Stamatopoulos*, Cécile Thibon, Philippe Darriet, Francis Mayeur, Sandrine Garbay

*Université de Bordeaux, ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).