Macrowine 2021
IVES 9 IVES Conference Series 9 Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Abstract

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes. During our investigation on red wine condensed tannins, three surprisingly polar tannins oligomers (one tetramer and two pentamers) were detected by HPLC-UV-MS (Tof) and their concentrations remained stable during wine aging. The objective of this study was (1) to develop a purification method for these three oligomers of condensed tannins observed in red wine, (2) to determine their structures by high resolution mass spectrometry, chemical depolymerization strategy, as well as NMR, (3) to quantify them in various red wine and to estimate their organoleptic properties. The new procyanidin tetramer and the two new procyanidin pentamers have been purified by a “three steps-two gels” strategy with the first step of C-18 Solid Phase Extraction, the second step of TSK-40S Gel Filtration Chromatography and the last step of C-18 HPLC semi-preparative. Their fragmentation pattern obtained by MS/MS analysis using a high resolution mass spectrometry revealed that these three compounds belong to the procyanidin family. Moreover the inter-flavanoid linkages, sub-units information as well as overall configuration of the tetramer were established by 1D and 2D NMR. The structure of the tetramer have been determined to be a symmetric procyanidin with four sub-units of (−)-epicatechin link together by B-type interflavanoid linkage in the following sequence of Unit 1-(4-8)-Unit 2-(4-6)-Unit 3-(4-8)-Unit 4 (4-6)-Unit 1 with the first unit linked with the last unit via the forth interflavanoid linkage C6-C4 to form the macrocyclic structure. Since such carbon skeleton has never been reported before for procyanidins in wine, neither in plants kingdom, we decide to name this new group of procyanidins “crown procyanidins”. This new procyanidin sub-family has been quantified in three different red wines (merlot, cabernet sauvignon and shiraz) with various vintages (from 1991 to 2011). The concentration of the crown procyanidin remains stable in wine during ageing and their concentration shows higher stability than linear B-type procyanidins which their content decrease during aging. Moreover, a strong correlation between these new procyanidin and the red wine astringency level has been observed.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Michael Jourdes*, Liming Zeng, Pere Pons-Mercadé, Pierre-Louis Teissedre, Stéphanie Krisa, Tristan Richard

*UMR 1219 OEnologie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.