Macrowine 2021
IVES 9 IVES Conference Series 9 Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Abstract

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes. During our investigation on red wine condensed tannins, three surprisingly polar tannins oligomers (one tetramer and two pentamers) were detected by HPLC-UV-MS (Tof) and their concentrations remained stable during wine aging. The objective of this study was (1) to develop a purification method for these three oligomers of condensed tannins observed in red wine, (2) to determine their structures by high resolution mass spectrometry, chemical depolymerization strategy, as well as NMR, (3) to quantify them in various red wine and to estimate their organoleptic properties. The new procyanidin tetramer and the two new procyanidin pentamers have been purified by a “three steps-two gels” strategy with the first step of C-18 Solid Phase Extraction, the second step of TSK-40S Gel Filtration Chromatography and the last step of C-18 HPLC semi-preparative. Their fragmentation pattern obtained by MS/MS analysis using a high resolution mass spectrometry revealed that these three compounds belong to the procyanidin family. Moreover the inter-flavanoid linkages, sub-units information as well as overall configuration of the tetramer were established by 1D and 2D NMR. The structure of the tetramer have been determined to be a symmetric procyanidin with four sub-units of (−)-epicatechin link together by B-type interflavanoid linkage in the following sequence of Unit 1-(4-8)-Unit 2-(4-6)-Unit 3-(4-8)-Unit 4 (4-6)-Unit 1 with the first unit linked with the last unit via the forth interflavanoid linkage C6-C4 to form the macrocyclic structure. Since such carbon skeleton has never been reported before for procyanidins in wine, neither in plants kingdom, we decide to name this new group of procyanidins “crown procyanidins”. This new procyanidin sub-family has been quantified in three different red wines (merlot, cabernet sauvignon and shiraz) with various vintages (from 1991 to 2011). The concentration of the crown procyanidin remains stable in wine during ageing and their concentration shows higher stability than linear B-type procyanidins which their content decrease during aging. Moreover, a strong correlation between these new procyanidin and the red wine astringency level has been observed.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Michael Jourdes*, Liming Zeng, Pere Pons-Mercadé, Pierre-Louis Teissedre, Stéphanie Krisa, Tristan Richard

*UMR 1219 OEnologie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.