Macrowine 2021
IVES 9 IVES Conference Series 9 Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Abstract

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes. During our investigation on red wine condensed tannins, three surprisingly polar tannins oligomers (one tetramer and two pentamers) were detected by HPLC-UV-MS (Tof) and their concentrations remained stable during wine aging. The objective of this study was (1) to develop a purification method for these three oligomers of condensed tannins observed in red wine, (2) to determine their structures by high resolution mass spectrometry, chemical depolymerization strategy, as well as NMR, (3) to quantify them in various red wine and to estimate their organoleptic properties. The new procyanidin tetramer and the two new procyanidin pentamers have been purified by a “three steps-two gels” strategy with the first step of C-18 Solid Phase Extraction, the second step of TSK-40S Gel Filtration Chromatography and the last step of C-18 HPLC semi-preparative. Their fragmentation pattern obtained by MS/MS analysis using a high resolution mass spectrometry revealed that these three compounds belong to the procyanidin family. Moreover the inter-flavanoid linkages, sub-units information as well as overall configuration of the tetramer were established by 1D and 2D NMR. The structure of the tetramer have been determined to be a symmetric procyanidin with four sub-units of (−)-epicatechin link together by B-type interflavanoid linkage in the following sequence of Unit 1-(4-8)-Unit 2-(4-6)-Unit 3-(4-8)-Unit 4 (4-6)-Unit 1 with the first unit linked with the last unit via the forth interflavanoid linkage C6-C4 to form the macrocyclic structure. Since such carbon skeleton has never been reported before for procyanidins in wine, neither in plants kingdom, we decide to name this new group of procyanidins “crown procyanidins”. This new procyanidin sub-family has been quantified in three different red wines (merlot, cabernet sauvignon and shiraz) with various vintages (from 1991 to 2011). The concentration of the crown procyanidin remains stable in wine during ageing and their concentration shows higher stability than linear B-type procyanidins which their content decrease during aging. Moreover, a strong correlation between these new procyanidin and the red wine astringency level has been observed.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Michael Jourdes*, Liming Zeng, Pere Pons-Mercadé, Pierre-Louis Teissedre, Stéphanie Krisa, Tristan Richard

*UMR 1219 OEnologie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.