Macrowine 2021
IVES 9 IVES Conference Series 9 Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Abstract

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes. During our investigation on red wine condensed tannins, three surprisingly polar tannins oligomers (one tetramer and two pentamers) were detected by HPLC-UV-MS (Tof) and their concentrations remained stable during wine aging. The objective of this study was (1) to develop a purification method for these three oligomers of condensed tannins observed in red wine, (2) to determine their structures by high resolution mass spectrometry, chemical depolymerization strategy, as well as NMR, (3) to quantify them in various red wine and to estimate their organoleptic properties. The new procyanidin tetramer and the two new procyanidin pentamers have been purified by a “three steps-two gels” strategy with the first step of C-18 Solid Phase Extraction, the second step of TSK-40S Gel Filtration Chromatography and the last step of C-18 HPLC semi-preparative. Their fragmentation pattern obtained by MS/MS analysis using a high resolution mass spectrometry revealed that these three compounds belong to the procyanidin family. Moreover the inter-flavanoid linkages, sub-units information as well as overall configuration of the tetramer were established by 1D and 2D NMR. The structure of the tetramer have been determined to be a symmetric procyanidin with four sub-units of (−)-epicatechin link together by B-type interflavanoid linkage in the following sequence of Unit 1-(4-8)-Unit 2-(4-6)-Unit 3-(4-8)-Unit 4 (4-6)-Unit 1 with the first unit linked with the last unit via the forth interflavanoid linkage C6-C4 to form the macrocyclic structure. Since such carbon skeleton has never been reported before for procyanidins in wine, neither in plants kingdom, we decide to name this new group of procyanidins “crown procyanidins”. This new procyanidin sub-family has been quantified in three different red wines (merlot, cabernet sauvignon and shiraz) with various vintages (from 1991 to 2011). The concentration of the crown procyanidin remains stable in wine during ageing and their concentration shows higher stability than linear B-type procyanidins which their content decrease during aging. Moreover, a strong correlation between these new procyanidin and the red wine astringency level has been observed.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Michael Jourdes*, Liming Zeng, Pere Pons-Mercadé, Pierre-Louis Teissedre, Stéphanie Krisa, Tristan Richard

*UMR 1219 OEnologie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.