Macrowine 2021
IVES 9 IVES Conference Series 9 Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Abstract

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes. During our investigation on red wine condensed tannins, three surprisingly polar tannins oligomers (one tetramer and two pentamers) were detected by HPLC-UV-MS (Tof) and their concentrations remained stable during wine aging. The objective of this study was (1) to develop a purification method for these three oligomers of condensed tannins observed in red wine, (2) to determine their structures by high resolution mass spectrometry, chemical depolymerization strategy, as well as NMR, (3) to quantify them in various red wine and to estimate their organoleptic properties. The new procyanidin tetramer and the two new procyanidin pentamers have been purified by a “three steps-two gels” strategy with the first step of C-18 Solid Phase Extraction, the second step of TSK-40S Gel Filtration Chromatography and the last step of C-18 HPLC semi-preparative. Their fragmentation pattern obtained by MS/MS analysis using a high resolution mass spectrometry revealed that these three compounds belong to the procyanidin family. Moreover the inter-flavanoid linkages, sub-units information as well as overall configuration of the tetramer were established by 1D and 2D NMR. The structure of the tetramer have been determined to be a symmetric procyanidin with four sub-units of (−)-epicatechin link together by B-type interflavanoid linkage in the following sequence of Unit 1-(4-8)-Unit 2-(4-6)-Unit 3-(4-8)-Unit 4 (4-6)-Unit 1 with the first unit linked with the last unit via the forth interflavanoid linkage C6-C4 to form the macrocyclic structure. Since such carbon skeleton has never been reported before for procyanidins in wine, neither in plants kingdom, we decide to name this new group of procyanidins “crown procyanidins”. This new procyanidin sub-family has been quantified in three different red wines (merlot, cabernet sauvignon and shiraz) with various vintages (from 1991 to 2011). The concentration of the crown procyanidin remains stable in wine during ageing and their concentration shows higher stability than linear B-type procyanidins which their content decrease during aging. Moreover, a strong correlation between these new procyanidin and the red wine astringency level has been observed.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Michael Jourdes*, Liming Zeng, Pere Pons-Mercadé, Pierre-Louis Teissedre, Stéphanie Krisa, Tristan Richard

*UMR 1219 OEnologie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.