Macrowine 2021
IVES 9 IVES Conference Series 9 Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

Abstract

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes. The relationship between these two families and chemical markers (2-methoxy-3-isobutyl, 3-isopropyl and 3-sec-butyl pyrazines and C6 alcohol compounds) was assessed. Strong anti-correlation between “green” and “fruity” was demonstrated but no significant correlations could be established with known molecular markers associated with fresh green characters. So, the contribution of other aromatic compounds was formulated in particular with the level of grape maturation. Microvinifications of Cabernet-Sauvignon grapes from Medoc vineyard harvested at two ripeness stages were done during 2014 and 2015 vintages. The so-obtained wines were extracted with organic solvents and the concentrated extracts were fractioned by semi-preparative HPLC. Among fifty fractions collected, one was particularly highlighted for its green aromas. The sensory impact of this fraction was first confirmed by omission and reconstitution tests. To determine the molecules responsible for green flavour of this fraction, GC-O (Gas Chromatography coupled with Olfactometry) and MDGC-O/Time-Of-Flight-MS were considered. 2-Methoxy-3-isobutyl-pyrazine well known as IBMP (bell pepper descriptor) was identified as one of the compounds responsible for the aroma of this fraction with two other odoriferous compounds presenting a green aroma. One belongs to terpene family, 1,8-cineole (herbs, fresh and eucalyptus descriptors), usually associated in wines with eucalyptus trees contamination. 1,8-cineole was definitively evidenced as a Vitis vinifera compound with concentrations assayed in wines from unripe grapes and other wines from Carmenet family close or higher to olfactory detection threshold (1 µg/l). 1,8-cineole concentrations were shown to decrease like IBMP during ripeness. The other compound was identified as methyl salicylate (fresh, leafy and wintergreen descriptors), a derivative of salicylic acid, sometimes quantified in wine samples at concentrations much higher than its detection threshold (40 µg/l). Supplementation tests at assayed concentrations in red wines for these two compounds exhibited a sensory impact on green aromas and a synergic effect was noticed with IBMP on the enhancement of the green flavour in red wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Xavier Poitou*, Philippe Darriet

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.