Macrowine 2021
IVES 9 IVES Conference Series 9 Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Abstract

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation. The highest levels of anthocyanins were found in Tannat skins altough those of Cabernet Sauvignon were higher than those of Merlot grapes. Anthocyanin profiles of skins changing significantly after veraison but these changes were very lower just before maturity, found the typical values of each variety The prevalent anthocyanin derivatives at the start of the maturation showed a decrease during the process. Malvidin proportions increased and cyanidin proportions decreased along the first stages of maturation, in agree with the biosynthesis of anthocyanins. Malvidin derivatives showed the fastest accumulation. At harvest, Tannat berries presented the highest sugar contents, total acidity, total polyphenol richness, total potential in anthocyanins and potential in extractable anthocyanins, and the lowest pH values. Tannat had the highest values of EA%, corresponding to the lowest extractability of anthocyanins. Significant differences among the anthocyanin profiles and contents of the grapes of each variety were found. The tri-hydroxylated molecules were prevalent respect to the di-hydroxylated anthocyanins in the three varieties. Tannat skins had the highest proportion of non-acylated glucosides, petunidin and delphinidin derivatives. Cabernet Sauvignon skins had the highest proportions of acetylated glucosides and malvidin derivatives. Merlot skins presented the highest proportions of coumaroyl glucosides and peonidin derivatives. It can be concluded that the grape variety and the environmental conditions determined important differences in the anthocyanin composition of grapes and the extractability of these compounds from the skins. The anthocyanin contents and profiles of the grapes of each variety presented high differences that might determine important variations in the colour and composition of the respective wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Gustavo González Neves*, Diego Piccardo, Graciela Gil, Guzmán Favre, Laura Barreiro, Milka Ferrer

*Universidad de la república

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.