Macrowine 2021
IVES 9 IVES Conference Series 9 Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Abstract

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation. The highest levels of anthocyanins were found in Tannat skins altough those of Cabernet Sauvignon were higher than those of Merlot grapes. Anthocyanin profiles of skins changing significantly after veraison but these changes were very lower just before maturity, found the typical values of each variety The prevalent anthocyanin derivatives at the start of the maturation showed a decrease during the process. Malvidin proportions increased and cyanidin proportions decreased along the first stages of maturation, in agree with the biosynthesis of anthocyanins. Malvidin derivatives showed the fastest accumulation. At harvest, Tannat berries presented the highest sugar contents, total acidity, total polyphenol richness, total potential in anthocyanins and potential in extractable anthocyanins, and the lowest pH values. Tannat had the highest values of EA%, corresponding to the lowest extractability of anthocyanins. Significant differences among the anthocyanin profiles and contents of the grapes of each variety were found. The tri-hydroxylated molecules were prevalent respect to the di-hydroxylated anthocyanins in the three varieties. Tannat skins had the highest proportion of non-acylated glucosides, petunidin and delphinidin derivatives. Cabernet Sauvignon skins had the highest proportions of acetylated glucosides and malvidin derivatives. Merlot skins presented the highest proportions of coumaroyl glucosides and peonidin derivatives. It can be concluded that the grape variety and the environmental conditions determined important differences in the anthocyanin composition of grapes and the extractability of these compounds from the skins. The anthocyanin contents and profiles of the grapes of each variety presented high differences that might determine important variations in the colour and composition of the respective wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Gustavo González Neves*, Diego Piccardo, Graciela Gil, Guzmán Favre, Laura Barreiro, Milka Ferrer

*Universidad de la república

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.