Macrowine 2021
IVES 9 IVES Conference Series 9 Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties

Abstract

Anthocyanin accumulation and extractability were studied in Tannat, Cabernet Sauvignon and Merlot grapes produced in the south of Uruguay in two consecutive seasons. Typical cultivation situations employed in the region for each variety were considered. A follow-up was carried out, considering 60 plants per vineyard, and the harvest was determined according to the technological indices of maturity. Samples of grapes were taken in duplicate in each vineyard periodically along grape maturation. The basic composition, polyphenolic potential and anthocyanin extractability were determined. Also, half of grapes were frozen and later peeled; skin extractions over 24 hs with a solution of 12% ethanol and pH 3.2 were carried out. The anthocyanin contents of the extracts obtained were determined by HPLC-DAD. The levels of anthocyanins reached the highest values before technological maturity. Anthocyanin extractability had a decrease during grape maturation. The highest levels of anthocyanins were found in Tannat skins altough those of Cabernet Sauvignon were higher than those of Merlot grapes. Anthocyanin profiles of skins changing significantly after veraison but these changes were very lower just before maturity, found the typical values of each variety The prevalent anthocyanin derivatives at the start of the maturation showed a decrease during the process. Malvidin proportions increased and cyanidin proportions decreased along the first stages of maturation, in agree with the biosynthesis of anthocyanins. Malvidin derivatives showed the fastest accumulation. At harvest, Tannat berries presented the highest sugar contents, total acidity, total polyphenol richness, total potential in anthocyanins and potential in extractable anthocyanins, and the lowest pH values. Tannat had the highest values of EA%, corresponding to the lowest extractability of anthocyanins. Significant differences among the anthocyanin profiles and contents of the grapes of each variety were found. The tri-hydroxylated molecules were prevalent respect to the di-hydroxylated anthocyanins in the three varieties. Tannat skins had the highest proportion of non-acylated glucosides, petunidin and delphinidin derivatives. Cabernet Sauvignon skins had the highest proportions of acetylated glucosides and malvidin derivatives. Merlot skins presented the highest proportions of coumaroyl glucosides and peonidin derivatives. It can be concluded that the grape variety and the environmental conditions determined important differences in the anthocyanin composition of grapes and the extractability of these compounds from the skins. The anthocyanin contents and profiles of the grapes of each variety presented high differences that might determine important variations in the colour and composition of the respective wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Gustavo González Neves*, Diego Piccardo, Graciela Gil, Guzmán Favre, Laura Barreiro, Milka Ferrer

*Universidad de la república

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.