Macrowine 2021
IVES 9 IVES Conference Series 9 Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Abstract

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids). We show that the main physiological response occurs in the early stages of berry development when the berry is still photosynthetically active and therefore responds to changes to the microclimate in the same way as the major photosynthetically active organs (leaves). The study shows that grapevine berries respond to the increased exposure by modulating secondary metabolites with antioxidant capacity, also exhibiting clearly a degree of plasticity on the metabolic level. This lead us to propose a mechanism of antioxidant homeostasis in the different developmental stages of the berries, using unique metabolites per stage, but with similar biological functions2. A further objective was to evaluate the specific responses and/or contributions of UV exposure to the observed results. Using UV attenuation screens to modulate UV exposure and metabolite profiling of specific secondary metabolites during development and ripening we show that the berries used carotenoids and associated xanthophyll cycles to support acclimation to UV exposure and that the berry responses differed between high and low light conditions. Taken together our results support that ecologically relevant doses of UV are used by grapevine to acclimate and modulate core processes to remain productive and thriving.

1. Alexandersson et al., 2014. Frontiers in Plant Science 5:296 2. Young et al. 2016. Plant Physiology DOI:10.1104/pp.15.01775

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Melane Vivier*, Chandre Joubert, Hans Eyeghe-Bickong, Philip Young

*Institute for Wine Biotechnology

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.