GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Response of Shiraz/101‐14 mgt to in‐row vine spacing

Response of Shiraz/101‐14 mgt to in‐row vine spacing

Abstract

Context and purpose of the study ‐ Knowledge of vine reaction to plant spacing under high potential soil conditions is restricted. This study was done to determine effects of vine spacing (with fixed row spacing) of Shiraz/101‐14 Mgt on a high potential soil on vine physiological reaction, growth, yield and grape composition. The study is targeting economic viability by considering establishment, yield, grape and wine quality, and expected longevity.

Material and methods – The project is carried out in the Breede River Valley, Robertson, South Africa. Shiraz(clone SH 9C)/101‐14 Mgt vines were planted during 2008 to a VSP trellis with a fixed row spacing of 2.2 m and a row orientation of approx. NNE‐SSW (30°). In‐row vine spacing varies from 0.3–4.5 m with increments of 30 cm (from 15151–1010 vines/ha), totalling 15 treatments. Treatments were irrigated similarly per week (based on ET0 values and standard seasonal crop factors). Grapes are harvested at two ripeness levels.

Results ‐ After establishing the experiment vineyard in 2008, results have been generated over six seasons with complete pruning system (2‐bud spurs, equally spaced) and cordon development. Canopies developed uniformly with cordon extension. General vegetative growth over treatments varied according to seasonal conditions. Except for individual leaf size, vegetative growth parameters (trunk circumference, shoot and cane mass) were mostly reduced for narrower spaced vines. Yield:cane mass ratios showed an increasing trend from narrow to wide vine spacing. Fertility, together with bunch mass, seemed to increase from narrow to wide spacings. Bunches of narrow spacing treatments seemed more compact. Physiological parameters revealed a complex interplay between vine structure expansion, microclimate, water relations, photosynthetic output, and carbon distribution. Grape composition followed trends of decreasing sugar levels (°B) and pH, and increasing titratable acidity (TA), from narrow to wide spacing. In line with physiological symptoms of stress and available leaf area per yield, sugar accumulation of wider spacings seemed delayed. A balance between oenological advancement, wine style and production returns per investment is critical. Total costs (as measured in this study), labour and yields showed very clear trends with an apparent optimal from 1.8–2.4 m vine spacing. Final sustainability would depend on the total cost of production, farm conditions, and labour skills.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

J.J. HUNTER (1), M. BOOYSE (2), C.G. VOLSCHENK (1)

(1) ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, South Africa (2) ARC Biometry, Private Bag X5026, Stellenbosch, South Africa

Contact the author

Keywords

Vine spacing, Physiology, Growth, Ripeness level, Grape composition, Sustainability

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.

IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

Chitosan is an effective antimicrobial agent available in the wine industry, because it ensures the control of a of spoilage microorganisms, such as Brettanomyces of lactic acid bacteria.

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Modeling the suitability of Pinot Noir in Oregon’s Willamette Valley in a changing climate

Air temperature is the key driver of grapevine phenology and a significant environmental factor impacting yield and quality for a winegrape growing region. In this study the optimal downscaled CMIP5 ensemble for computing thegrowing season average temperature (GST) viticulture climate classification index was determined to spatially compute on a decadal basis predictions of the GST climate index and the grapevine sugar ripeness (GSR) model for Pinot Noir throughout the Willamette Valley (WV) American Viticultural Area (AVA). Forecasts for average temperature and a 220 g/L target sugar concentration level were computed using daily Localized Constructed Analogs (LOCA) downscaled CMIP5 historic and Representative Concentration Pathways (RCP) future climate projections of minimum and maximum daily temperature. We explore spatiotemporal trends of the GST climate classification index and Pinot Noir specific applications of the GSR phenology model for the WV AVA. Spatiotemporal computations of the GST climate index and Pinot Noir specific applications of the GSR model enable the opportunity to explore relationships between their computed values with one intent being to provide updated GST ranges that better align with current temperature-based modeling understanding of Pinot Noir grapevine phenology and the viticultural application of LOCA CMIP5 climate projections for the WV AVA. The Pinot Noir specific applications of the GSR model or the GST index with updated bounds indicate that the percent of the WV AVA area suitable for Pinot Noir production is currently at or near its peak value in the upper 80s to lower 90s of this century.