Macrowine 2021
IVES 9 IVES Conference Series 9 Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Abstract

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley (Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette. It is the wine most produced in Aosta Valley and represents the 16% of the production. Previous studies carried out by our group highlighted for their oenological interest red Petit rou ge, Vuillermin, Cornalin, and Mayolet. The results outlined the needing of further researchers to evaluate the composition, behaviour and evolution of Fumin varietal wines. Body The aim of this work was to evaluate and compare the impact of three different types of winemaking of Fumin grapes in which the individual or combined effects of pre-fermentative and post-fermentative maceration, barrique and steel aging, malolactic fermentation and microoxygenation were tested. The sensory profiling of the wines obtained as well as the changes occurring in the chemical composition, colour parameters, polyphenol and aroma compounds, volatile phenols and biogenic amines were determined according to O.I.V. methods and metabolomic approaches thorough UPLC-MS. It was observed that pre-fermentative and post-fermentative maceration, as well as barrique and steel aging produced changes of the same magnitude in all the analyzed compounds. Sensory data also revealed that Fumin produced varietal wines with a great potential which would provide a viable alternative to some international red grape varieties and would favor the differentiation of the Aosta Valley on the national and international wine markets. In line with the new enological trends aimed at implementing the production of high-quality red wines from the exploitation of the intrinsic characteristics of the grapes and their preservation in the final product, the data provided by this study could be used as a chemotaxonomic tool to fingerprint Fumin for the first time.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Milena Lambri*, Andrea Barmaz, Daniele Domeneghetti, Dante Marco De Faveri, Sabina Valentini

*UCSC

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins