Macrowine 2021
IVES 9 IVES Conference Series 9 Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Abstract

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley (Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette. It is the wine most produced in Aosta Valley and represents the 16% of the production. Previous studies carried out by our group highlighted for their oenological interest red Petit rou ge, Vuillermin, Cornalin, and Mayolet. The results outlined the needing of further researchers to evaluate the composition, behaviour and evolution of Fumin varietal wines. Body The aim of this work was to evaluate and compare the impact of three different types of winemaking of Fumin grapes in which the individual or combined effects of pre-fermentative and post-fermentative maceration, barrique and steel aging, malolactic fermentation and microoxygenation were tested. The sensory profiling of the wines obtained as well as the changes occurring in the chemical composition, colour parameters, polyphenol and aroma compounds, volatile phenols and biogenic amines were determined according to O.I.V. methods and metabolomic approaches thorough UPLC-MS. It was observed that pre-fermentative and post-fermentative maceration, as well as barrique and steel aging produced changes of the same magnitude in all the analyzed compounds. Sensory data also revealed that Fumin produced varietal wines with a great potential which would provide a viable alternative to some international red grape varieties and would favor the differentiation of the Aosta Valley on the national and international wine markets. In line with the new enological trends aimed at implementing the production of high-quality red wines from the exploitation of the intrinsic characteristics of the grapes and their preservation in the final product, the data provided by this study could be used as a chemotaxonomic tool to fingerprint Fumin for the first time.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Milena Lambri*, Andrea Barmaz, Daniele Domeneghetti, Dante Marco De Faveri, Sabina Valentini

*UCSC

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.