Macrowine 2021
IVES 9 IVES Conference Series 9 Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Abstract

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process. While Saccharomyces cerevisiae seems to be limited in their expression of glycosidase enzymes required to cleave and liberate the aroma compounds from their precursors, different non-Saccharomyces yeast genera show more prominence. Due to the infrequent and scarce occurrence of Saccharomyces cerevisiae in the vineyard and grape samples, many scientific findings report that spontaneous alcoholic fermentation is dominantly conducted by yeast strains originating from the winery environment rather than from the vineyard. However, recent advancements of modern genetic tools have elucidated site-specific microbiota on grapes from different vineyards and vintages. Their role in fermented wine has not yet been clarified. This study aims to shed light on the roles of vineyard and winery microbiomes in wine fermentations in relation to fermentation dynamics, aroma formation and sensory perception. Riesling grapes from five different Riesling vineyards in the Pfalz region, Germany were picked aseptically during the 2015 vintage. Pilot-scale spontaneous fermentations with triplicates were conducted with aseptically managed winemaking. Fermentation progress was monitored by density measurements and FTIR-spectroscopy. Yeast population dynamics in the fermentations were monitored and identified with next-generation sequencing technology. Descriptive analysis of the wines was used to evaluate the changes in aroma and flavor sensory profiles. Results show plausible promise in both the microbial difference occurring in the vineyard as well as impact of the winery derived microbiome. Modulation of aroma and taste was observed and correlated with the occurrence of specific yeast species.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Kimmo Sirén*, M Thomas P Gilbert, Sarah S.T. Mak, Ulrich Fischer

*DLR RheinPfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).