Macrowine 2021
IVES 9 IVES Conference Series 9 Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Abstract

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine. Material and methods: Chardonnay and Syrah grapes and a Tannat red wine (Tannat, Languedoc, 2015) were used to make polyphenol extracts by using different preparative gel chromatography techniques (HW40S, LH20 and silica gels). The different fractions obtained were analyzed by UPLC-ESI-IT_MS (Waters Acquity, negative scan and targeted mode). Specific molecular ions corresponding to monomeric and dimeric flavanol glycosides were targeted with specific m/z values: 451 (epi) catechin glucoside, 467 epigallocatechin glucoside, 603 epicatechin gallate glucoside and 739 (epi) catechin glucoside dimer. Results: The existence of glycosylated flavan-3-ol monomers in wine and grape seeds have already been reported based on MS/MS experiments.5 Our results confirmed their presence in Tannat wines and grapes but new MS ions corresponding to glycosylated procyanidin dimers (m/z = 739) were also detected. MS/MS specific ions were also found for these dimers like an ion at m/z = 449 (quinone-methide cleavage (QM)) and at m/z = 587 Da (Retro Diels Alder reaction (RDA)). Further work is on the way to elucidate the exact structure of these compounds (hexose nature and position) by NMR. The complete structural elucidation of these glycosylated dimers will help to determine their exact role in proanthocyanidin biosynthesis.

1. Quideau, S., Deffieux, D., Douat-Casassus, C., and Pouysegu, L. (2011), Angew Chem Int Ed Engl 50, 586-621. 2. Antoniolli, A., Fontana, A. R., Piccoli, P., and Rubén, B. (2015), 178, 172–178. 3. Pang Y, C. X., Huhman DV, Ma J, Peel GJ, Yonekura-Sakakibara K, Saito K, Shen G, Sumner LW, Tang Y, Wen J, Yun J, Dixon RA. (2013)., Planta, 139-154. 4. Zhao, J., and Dixon, R. A. (2009), The Plant Cell 21, 2323-2340. 5. Delcambre, A., and Saucier, C. (2012), J Mass Spectrom 47, 727-736. 6. Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher, G., Holden, J., Haytowitz, D., and Prior, R. L. (2003), J Agric Food Chem 51, 7513-7521.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Cédric Saucier*, Chloé Puech, Emmanuelle Meudec, Jean-Paul Mazauric, Marie Zerbib, Mauve Abelanet, Nancy Terrier, Veronique Cheynier

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.