Macrowine 2021
IVES 9 IVES Conference Series 9 Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Abstract

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine. Material and methods: Chardonnay and Syrah grapes and a Tannat red wine (Tannat, Languedoc, 2015) were used to make polyphenol extracts by using different preparative gel chromatography techniques (HW40S, LH20 and silica gels). The different fractions obtained were analyzed by UPLC-ESI-IT_MS (Waters Acquity, negative scan and targeted mode). Specific molecular ions corresponding to monomeric and dimeric flavanol glycosides were targeted with specific m/z values: 451 (epi) catechin glucoside, 467 epigallocatechin glucoside, 603 epicatechin gallate glucoside and 739 (epi) catechin glucoside dimer. Results: The existence of glycosylated flavan-3-ol monomers in wine and grape seeds have already been reported based on MS/MS experiments.5 Our results confirmed their presence in Tannat wines and grapes but new MS ions corresponding to glycosylated procyanidin dimers (m/z = 739) were also detected. MS/MS specific ions were also found for these dimers like an ion at m/z = 449 (quinone-methide cleavage (QM)) and at m/z = 587 Da (Retro Diels Alder reaction (RDA)). Further work is on the way to elucidate the exact structure of these compounds (hexose nature and position) by NMR. The complete structural elucidation of these glycosylated dimers will help to determine their exact role in proanthocyanidin biosynthesis.

1. Quideau, S., Deffieux, D., Douat-Casassus, C., and Pouysegu, L. (2011), Angew Chem Int Ed Engl 50, 586-621. 2. Antoniolli, A., Fontana, A. R., Piccoli, P., and Rubén, B. (2015), 178, 172–178. 3. Pang Y, C. X., Huhman DV, Ma J, Peel GJ, Yonekura-Sakakibara K, Saito K, Shen G, Sumner LW, Tang Y, Wen J, Yun J, Dixon RA. (2013)., Planta, 139-154. 4. Zhao, J., and Dixon, R. A. (2009), The Plant Cell 21, 2323-2340. 5. Delcambre, A., and Saucier, C. (2012), J Mass Spectrom 47, 727-736. 6. Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher, G., Holden, J., Haytowitz, D., and Prior, R. L. (2003), J Agric Food Chem 51, 7513-7521.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Cédric Saucier*, Chloé Puech, Emmanuelle Meudec, Jean-Paul Mazauric, Marie Zerbib, Mauve Abelanet, Nancy Terrier, Veronique Cheynier

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.