Macrowine 2021
IVES 9 IVES Conference Series 9 Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Abstract

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine. Material and methods: Chardonnay and Syrah grapes and a Tannat red wine (Tannat, Languedoc, 2015) were used to make polyphenol extracts by using different preparative gel chromatography techniques (HW40S, LH20 and silica gels). The different fractions obtained were analyzed by UPLC-ESI-IT_MS (Waters Acquity, negative scan and targeted mode). Specific molecular ions corresponding to monomeric and dimeric flavanol glycosides were targeted with specific m/z values: 451 (epi) catechin glucoside, 467 epigallocatechin glucoside, 603 epicatechin gallate glucoside and 739 (epi) catechin glucoside dimer. Results: The existence of glycosylated flavan-3-ol monomers in wine and grape seeds have already been reported based on MS/MS experiments.5 Our results confirmed their presence in Tannat wines and grapes but new MS ions corresponding to glycosylated procyanidin dimers (m/z = 739) were also detected. MS/MS specific ions were also found for these dimers like an ion at m/z = 449 (quinone-methide cleavage (QM)) and at m/z = 587 Da (Retro Diels Alder reaction (RDA)). Further work is on the way to elucidate the exact structure of these compounds (hexose nature and position) by NMR. The complete structural elucidation of these glycosylated dimers will help to determine their exact role in proanthocyanidin biosynthesis.

1. Quideau, S., Deffieux, D., Douat-Casassus, C., and Pouysegu, L. (2011), Angew Chem Int Ed Engl 50, 586-621. 2. Antoniolli, A., Fontana, A. R., Piccoli, P., and Rubén, B. (2015), 178, 172–178. 3. Pang Y, C. X., Huhman DV, Ma J, Peel GJ, Yonekura-Sakakibara K, Saito K, Shen G, Sumner LW, Tang Y, Wen J, Yun J, Dixon RA. (2013)., Planta, 139-154. 4. Zhao, J., and Dixon, R. A. (2009), The Plant Cell 21, 2323-2340. 5. Delcambre, A., and Saucier, C. (2012), J Mass Spectrom 47, 727-736. 6. Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher, G., Holden, J., Haytowitz, D., and Prior, R. L. (2003), J Agric Food Chem 51, 7513-7521.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Cédric Saucier*, Chloé Puech, Emmanuelle Meudec, Jean-Paul Mazauric, Marie Zerbib, Mauve Abelanet, Nancy Terrier, Veronique Cheynier

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).