Macrowine 2021
IVES 9 IVES Conference Series 9 Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Abstract

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine. Material and methods: Chardonnay and Syrah grapes and a Tannat red wine (Tannat, Languedoc, 2015) were used to make polyphenol extracts by using different preparative gel chromatography techniques (HW40S, LH20 and silica gels). The different fractions obtained were analyzed by UPLC-ESI-IT_MS (Waters Acquity, negative scan and targeted mode). Specific molecular ions corresponding to monomeric and dimeric flavanol glycosides were targeted with specific m/z values: 451 (epi) catechin glucoside, 467 epigallocatechin glucoside, 603 epicatechin gallate glucoside and 739 (epi) catechin glucoside dimer. Results: The existence of glycosylated flavan-3-ol monomers in wine and grape seeds have already been reported based on MS/MS experiments.5 Our results confirmed their presence in Tannat wines and grapes but new MS ions corresponding to glycosylated procyanidin dimers (m/z = 739) were also detected. MS/MS specific ions were also found for these dimers like an ion at m/z = 449 (quinone-methide cleavage (QM)) and at m/z = 587 Da (Retro Diels Alder reaction (RDA)). Further work is on the way to elucidate the exact structure of these compounds (hexose nature and position) by NMR. The complete structural elucidation of these glycosylated dimers will help to determine their exact role in proanthocyanidin biosynthesis.

1. Quideau, S., Deffieux, D., Douat-Casassus, C., and Pouysegu, L. (2011), Angew Chem Int Ed Engl 50, 586-621. 2. Antoniolli, A., Fontana, A. R., Piccoli, P., and Rubén, B. (2015), 178, 172–178. 3. Pang Y, C. X., Huhman DV, Ma J, Peel GJ, Yonekura-Sakakibara K, Saito K, Shen G, Sumner LW, Tang Y, Wen J, Yun J, Dixon RA. (2013)., Planta, 139-154. 4. Zhao, J., and Dixon, R. A. (2009), The Plant Cell 21, 2323-2340. 5. Delcambre, A., and Saucier, C. (2012), J Mass Spectrom 47, 727-736. 6. Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher, G., Holden, J., Haytowitz, D., and Prior, R. L. (2003), J Agric Food Chem 51, 7513-7521.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Cédric Saucier*, Chloé Puech, Emmanuelle Meudec, Jean-Paul Mazauric, Marie Zerbib, Mauve Abelanet, Nancy Terrier, Veronique Cheynier

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.