Macrowine 2021
IVES 9 IVES Conference Series 9 Metabolomic profile of red non-V. vinifera genotypes

Metabolomic profile of red non-V. vinifera genotypes

Abstract

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera. For this reason, these genotypes have been used in breeding programs in order to introgress resistant traits to pests and diseases in V. vinifera species. The aim of this work was to study the metabolite profiles (simple phenolic compounds, anthocyanins, lipids and proanthocyanidins) of two hybrid varieties (41B and K5BB) and seven American Vitis species (V. andersonii, V. arizonica, V. champinii, V. cinerea, V. riparia, V. slavinii and V. californica) in six different vintages. The results were compared with two V. vinifera cultivars (Pinot Noir and Cabernet Sauvignon). Grape skin anthocyanins were analyzed by HPLC-DAD [1] and twenty different anthocyanins were detected and quantified. In four genotypes less than 5% of the total amount of anthocyanins detected were diglucosides (from 11.6 to 56.9 mg/kg). In the five remaining genotypes more than 50% of the total were found to be diglucosides (from 522.1 to 2657.6 mg/kg). Analysis of phenolic compounds by UHPLC-MS/MS [2] showed that three non-V. vinifera genotypes contained higher average amount of total phenolics compared to V. vinifera cultivars. A rapid LC-MS/MS method [3] was used to identify and quantify thirty-three lipids. The total lipids of eight out of nine non-V. vinifera genotypes was higher compared to V. vinifera cultivars. The differences between the genotypes’ content of anthocyanins, phenolics and lipids were investigated by heatmap analysis. The data was scaled to unit variance, the correlation of variables was used as the distance measure and Ward’s minimum variance method was used for hierarchical clustering. Up to our knowledge this is the most extended metabolomics profiling study on wild Vitis grape genotypes. Altogether, this study highlights the presence of a significant genotypic diversity between the composition of the fruits of V. vinifera and other species. The knowledge of their composition can greatly influence the further breeding programs, since being responsible for both the quality and the resistance traits of new grape interspecific varieties.

[1] Mattivi F. et al. JAFC 2006, 54, 7692-7702 [2] Vrhovsek U. et al. JAFC 2012, 60, 8831-8840 [3] Della Corte A. et al. Talanta 2015, 140, 52-61

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Silvia Ruocco*, Daniele Perenzoni, Fulvio Mattivi, Jan Stanstrup, Marco Stefanini, Urska Vrhovsek

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).