Macrowine 2021
IVES 9 IVES Conference Series 9 Metabolomic profile of red non-V. vinifera genotypes

Metabolomic profile of red non-V. vinifera genotypes

Abstract

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera. For this reason, these genotypes have been used in breeding programs in order to introgress resistant traits to pests and diseases in V. vinifera species. The aim of this work was to study the metabolite profiles (simple phenolic compounds, anthocyanins, lipids and proanthocyanidins) of two hybrid varieties (41B and K5BB) and seven American Vitis species (V. andersonii, V. arizonica, V. champinii, V. cinerea, V. riparia, V. slavinii and V. californica) in six different vintages. The results were compared with two V. vinifera cultivars (Pinot Noir and Cabernet Sauvignon). Grape skin anthocyanins were analyzed by HPLC-DAD [1] and twenty different anthocyanins were detected and quantified. In four genotypes less than 5% of the total amount of anthocyanins detected were diglucosides (from 11.6 to 56.9 mg/kg). In the five remaining genotypes more than 50% of the total were found to be diglucosides (from 522.1 to 2657.6 mg/kg). Analysis of phenolic compounds by UHPLC-MS/MS [2] showed that three non-V. vinifera genotypes contained higher average amount of total phenolics compared to V. vinifera cultivars. A rapid LC-MS/MS method [3] was used to identify and quantify thirty-three lipids. The total lipids of eight out of nine non-V. vinifera genotypes was higher compared to V. vinifera cultivars. The differences between the genotypes’ content of anthocyanins, phenolics and lipids were investigated by heatmap analysis. The data was scaled to unit variance, the correlation of variables was used as the distance measure and Ward’s minimum variance method was used for hierarchical clustering. Up to our knowledge this is the most extended metabolomics profiling study on wild Vitis grape genotypes. Altogether, this study highlights the presence of a significant genotypic diversity between the composition of the fruits of V. vinifera and other species. The knowledge of their composition can greatly influence the further breeding programs, since being responsible for both the quality and the resistance traits of new grape interspecific varieties.

[1] Mattivi F. et al. JAFC 2006, 54, 7692-7702 [2] Vrhovsek U. et al. JAFC 2012, 60, 8831-8840 [3] Della Corte A. et al. Talanta 2015, 140, 52-61

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Silvia Ruocco*, Daniele Perenzoni, Fulvio Mattivi, Jan Stanstrup, Marco Stefanini, Urska Vrhovsek

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.