Macrowine 2021
IVES 9 IVES Conference Series 9 Metabolomic profile of red non-V. vinifera genotypes

Metabolomic profile of red non-V. vinifera genotypes

Abstract

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera. For this reason, these genotypes have been used in breeding programs in order to introgress resistant traits to pests and diseases in V. vinifera species. The aim of this work was to study the metabolite profiles (simple phenolic compounds, anthocyanins, lipids and proanthocyanidins) of two hybrid varieties (41B and K5BB) and seven American Vitis species (V. andersonii, V. arizonica, V. champinii, V. cinerea, V. riparia, V. slavinii and V. californica) in six different vintages. The results were compared with two V. vinifera cultivars (Pinot Noir and Cabernet Sauvignon). Grape skin anthocyanins were analyzed by HPLC-DAD [1] and twenty different anthocyanins were detected and quantified. In four genotypes less than 5% of the total amount of anthocyanins detected were diglucosides (from 11.6 to 56.9 mg/kg). In the five remaining genotypes more than 50% of the total were found to be diglucosides (from 522.1 to 2657.6 mg/kg). Analysis of phenolic compounds by UHPLC-MS/MS [2] showed that three non-V. vinifera genotypes contained higher average amount of total phenolics compared to V. vinifera cultivars. A rapid LC-MS/MS method [3] was used to identify and quantify thirty-three lipids. The total lipids of eight out of nine non-V. vinifera genotypes was higher compared to V. vinifera cultivars. The differences between the genotypes’ content of anthocyanins, phenolics and lipids were investigated by heatmap analysis. The data was scaled to unit variance, the correlation of variables was used as the distance measure and Ward’s minimum variance method was used for hierarchical clustering. Up to our knowledge this is the most extended metabolomics profiling study on wild Vitis grape genotypes. Altogether, this study highlights the presence of a significant genotypic diversity between the composition of the fruits of V. vinifera and other species. The knowledge of their composition can greatly influence the further breeding programs, since being responsible for both the quality and the resistance traits of new grape interspecific varieties.

[1] Mattivi F. et al. JAFC 2006, 54, 7692-7702 [2] Vrhovsek U. et al. JAFC 2012, 60, 8831-8840 [3] Della Corte A. et al. Talanta 2015, 140, 52-61

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Silvia Ruocco*, Daniele Perenzoni, Fulvio Mattivi, Jan Stanstrup, Marco Stefanini, Urska Vrhovsek

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).