Macrowine 2021
IVES 9 IVES Conference Series 9 Metabolomic profile of red non-V. vinifera genotypes

Metabolomic profile of red non-V. vinifera genotypes

Abstract

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera. For this reason, these genotypes have been used in breeding programs in order to introgress resistant traits to pests and diseases in V. vinifera species. The aim of this work was to study the metabolite profiles (simple phenolic compounds, anthocyanins, lipids and proanthocyanidins) of two hybrid varieties (41B and K5BB) and seven American Vitis species (V. andersonii, V. arizonica, V. champinii, V. cinerea, V. riparia, V. slavinii and V. californica) in six different vintages. The results were compared with two V. vinifera cultivars (Pinot Noir and Cabernet Sauvignon). Grape skin anthocyanins were analyzed by HPLC-DAD [1] and twenty different anthocyanins were detected and quantified. In four genotypes less than 5% of the total amount of anthocyanins detected were diglucosides (from 11.6 to 56.9 mg/kg). In the five remaining genotypes more than 50% of the total were found to be diglucosides (from 522.1 to 2657.6 mg/kg). Analysis of phenolic compounds by UHPLC-MS/MS [2] showed that three non-V. vinifera genotypes contained higher average amount of total phenolics compared to V. vinifera cultivars. A rapid LC-MS/MS method [3] was used to identify and quantify thirty-three lipids. The total lipids of eight out of nine non-V. vinifera genotypes was higher compared to V. vinifera cultivars. The differences between the genotypes’ content of anthocyanins, phenolics and lipids were investigated by heatmap analysis. The data was scaled to unit variance, the correlation of variables was used as the distance measure and Ward’s minimum variance method was used for hierarchical clustering. Up to our knowledge this is the most extended metabolomics profiling study on wild Vitis grape genotypes. Altogether, this study highlights the presence of a significant genotypic diversity between the composition of the fruits of V. vinifera and other species. The knowledge of their composition can greatly influence the further breeding programs, since being responsible for both the quality and the resistance traits of new grape interspecific varieties.

[1] Mattivi F. et al. JAFC 2006, 54, 7692-7702 [2] Vrhovsek U. et al. JAFC 2012, 60, 8831-8840 [3] Della Corte A. et al. Talanta 2015, 140, 52-61

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Silvia Ruocco*, Daniele Perenzoni, Fulvio Mattivi, Jan Stanstrup, Marco Stefanini, Urska Vrhovsek

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Grape byproducts as source of resveratrol oligomers for the development of antifungal extracts

Grape canes are a non-recycled byproduct of wine industry (1-5 tons per hectare per year) containing valuable phytochemicals of medicine and agronomical interest. Resveratrol and wine polyphenols are known to exert a plethora of health-promoting effects including antioxidant capacity, cardioprotection, anticancer activity, anti-inflammatory effects, and estrogenic/antiestrogenic properties (Guerrero et al. 2009). Additionally, resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance (Chang et al. 2011). Our project aims to develop polyphenol-rich grape cane extracts to fight phytopathogenic or clinically relevant fungi. We initiate the project with the development of analytical methods to analyze resveratrol mono- and oligomers (dimers, trimers and tetramers) from grape canes and we evaluate their potential activity against clinically relevant opportunistic fungal pathogens (Houillé et al. 2014).