Macrowine 2021
IVES 9 IVES Conference Series 9 Metabolomic profile of red non-V. vinifera genotypes

Metabolomic profile of red non-V. vinifera genotypes

Abstract

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera. For this reason, these genotypes have been used in breeding programs in order to introgress resistant traits to pests and diseases in V. vinifera species. The aim of this work was to study the metabolite profiles (simple phenolic compounds, anthocyanins, lipids and proanthocyanidins) of two hybrid varieties (41B and K5BB) and seven American Vitis species (V. andersonii, V. arizonica, V. champinii, V. cinerea, V. riparia, V. slavinii and V. californica) in six different vintages. The results were compared with two V. vinifera cultivars (Pinot Noir and Cabernet Sauvignon). Grape skin anthocyanins were analyzed by HPLC-DAD [1] and twenty different anthocyanins were detected and quantified. In four genotypes less than 5% of the total amount of anthocyanins detected were diglucosides (from 11.6 to 56.9 mg/kg). In the five remaining genotypes more than 50% of the total were found to be diglucosides (from 522.1 to 2657.6 mg/kg). Analysis of phenolic compounds by UHPLC-MS/MS [2] showed that three non-V. vinifera genotypes contained higher average amount of total phenolics compared to V. vinifera cultivars. A rapid LC-MS/MS method [3] was used to identify and quantify thirty-three lipids. The total lipids of eight out of nine non-V. vinifera genotypes was higher compared to V. vinifera cultivars. The differences between the genotypes’ content of anthocyanins, phenolics and lipids were investigated by heatmap analysis. The data was scaled to unit variance, the correlation of variables was used as the distance measure and Ward’s minimum variance method was used for hierarchical clustering. Up to our knowledge this is the most extended metabolomics profiling study on wild Vitis grape genotypes. Altogether, this study highlights the presence of a significant genotypic diversity between the composition of the fruits of V. vinifera and other species. The knowledge of their composition can greatly influence the further breeding programs, since being responsible for both the quality and the resistance traits of new grape interspecific varieties.

[1] Mattivi F. et al. JAFC 2006, 54, 7692-7702 [2] Vrhovsek U. et al. JAFC 2012, 60, 8831-8840 [3] Della Corte A. et al. Talanta 2015, 140, 52-61

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Silvia Ruocco*, Daniele Perenzoni, Fulvio Mattivi, Jan Stanstrup, Marco Stefanini, Urska Vrhovsek

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

One of the key factors of the economical development of viticulture and wine industry in specific limited areas is the exploitation of ancient, local grape varieties. Therefore, in recent years the growing interest to rediscover minor varieties, previously cultivated, has promoted many studies. With this regard, the focus of this study was the Vitis vinifera L. cultivar Moscato nero d’Acqui, nowadays found only in old vineyards in the Acqui zone (North-West Italy). In particular, the aims of this work were: i) to investigate secondary metabolites profile of the grapes, and ii) to evaluate the attitude to the production of special wines.

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.