GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Water potential in cv. Verdejo: response at different day times to the variation of water regime in the d.o. rueda (Spain)

Water potential in cv. Verdejo: response at different day times to the variation of water regime in the d.o. rueda (Spain)

Abstract

Context and purpose of the study ‐ Irrigation management is a critical aspect in grapevine cultivation to regularize grape production and quality in areas of clear water limitation. The scarcity of information implies the need to know the plant water status to make an estimate of the response of cv. Verdejo to the variation of water regime in vineyard cultivation.

Material and methods ‐ Throughout the 2016, 2017 and 2018 seasons, the vine water status was studied through the measurement of leaf and xylem water potential, at different times of the day, as response to the application of three treatments of water regime: rainfed (R0), irrigation of 30% ETo from beginning of veraison (R1) and irrigation of 30% ETo from pea size (R2), in both cases until harvest. The trial was developed with vines of cv. Verdejo, on 110R, planted in 2006 and vertically trellised trained, in the D.O. Rueda (Spain).

Results ‐ The various types of measurement of water potential showed significantly less negative values in the irrigated vines (R2) than in the non‐irrigated ones (R0 and R1) until veraison, with more or less delay, compared to the start of irrigation in R2, depending on the year and on the measurement time. The measurement of xylem water potential, at 12 hs, showed a slight delay in the appreciation of the significant differences favorable to R2. In contrast, the measure at 7 hs in leaves on the shaded side showed greater immediacy in the favorable discrimination to R2 the driest year, 2017. The wettest year, 2018, none of the potential measurement types was able to show significant differences between treatments throughout the entire period in which only the R2 treatment was irrigated. From the beginning of the application of irrigation in treatment R1, at the beginning of the veraison, the various measurements of water potential showed significant differences favorable to the irrigated treatments (R2 and R1) with respect to the rainfed one (R0), with values slightly less negative of R2 than of R1, at all hours of measurement. However, in the wettest year, 2018, the appearance of these significant differences was delayed in the various types of measurement, but more accentuated in the measure of xylem potential, at 12 hs, and in the 9 hs in leaves of the sunny side, while at 12 hs in leaves of the sunny side it was not registered. The measurement of water potential at 7 hs in shaded leaves was slightly more sensitive to the variation of the water regime, besides being more comfortable to execute, than at 9 and 12 hs in leaves to the sun and, in particular, than that of xylem potential, at 12 hs, which also requires the pre‐bagging of the measuring leaf. Therefore, the measurement of water potential at 7 hs in leaves on the shaded side is interesting as a practical indicator of the water status of the vineyard.

 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Jesus YUSTE (1), Daniel MARTINEZ‐PORRO (1)

(1) Instituto tecnologico agrario de castilla y Leon, Ctra. Burgos km 119, 47071 Valladolid, Spain

Contact the author

Keywords

Leaf, Pressure chamber, Shade, Sunlight, Xylem

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.

Evolution of the metabolic profile of grapes in a context of climate change

In the current context of global climate change, anticipating the evolution of the oenological potential of emblematic grape varieties of regions such as Burgundy and Champagne is a guarantee of the sustainability of a sector which has considerable economic weight. however, if various models of climate change cast doubt on the sustainability of these grape varieties in these regions, appellation decrees, as well as consumer expectations, do not allow or consider the use of alternative grape varieties. In addition, control/compensation methods such as irrigation are also not permitted.

Highlighting the several chemical situations of Dimethyl sulfide in wine

Dimethyl sulfide (DMS) is a compound that accumulate in wine for the early years of ageing 1. During this stage, which is often carried out in the bottle, the environmental conditions are conducive to the release of DMS from its precursors, already present in grapes2