GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Water potential in cv. Verdejo: response at different day times to the variation of water regime in the d.o. rueda (Spain)

Water potential in cv. Verdejo: response at different day times to the variation of water regime in the d.o. rueda (Spain)

Abstract

Context and purpose of the study ‐ Irrigation management is a critical aspect in grapevine cultivation to regularize grape production and quality in areas of clear water limitation. The scarcity of information implies the need to know the plant water status to make an estimate of the response of cv. Verdejo to the variation of water regime in vineyard cultivation.

Material and methods ‐ Throughout the 2016, 2017 and 2018 seasons, the vine water status was studied through the measurement of leaf and xylem water potential, at different times of the day, as response to the application of three treatments of water regime: rainfed (R0), irrigation of 30% ETo from beginning of veraison (R1) and irrigation of 30% ETo from pea size (R2), in both cases until harvest. The trial was developed with vines of cv. Verdejo, on 110R, planted in 2006 and vertically trellised trained, in the D.O. Rueda (Spain).

Results ‐ The various types of measurement of water potential showed significantly less negative values in the irrigated vines (R2) than in the non‐irrigated ones (R0 and R1) until veraison, with more or less delay, compared to the start of irrigation in R2, depending on the year and on the measurement time. The measurement of xylem water potential, at 12 hs, showed a slight delay in the appreciation of the significant differences favorable to R2. In contrast, the measure at 7 hs in leaves on the shaded side showed greater immediacy in the favorable discrimination to R2 the driest year, 2017. The wettest year, 2018, none of the potential measurement types was able to show significant differences between treatments throughout the entire period in which only the R2 treatment was irrigated. From the beginning of the application of irrigation in treatment R1, at the beginning of the veraison, the various measurements of water potential showed significant differences favorable to the irrigated treatments (R2 and R1) with respect to the rainfed one (R0), with values slightly less negative of R2 than of R1, at all hours of measurement. However, in the wettest year, 2018, the appearance of these significant differences was delayed in the various types of measurement, but more accentuated in the measure of xylem potential, at 12 hs, and in the 9 hs in leaves of the sunny side, while at 12 hs in leaves of the sunny side it was not registered. The measurement of water potential at 7 hs in shaded leaves was slightly more sensitive to the variation of the water regime, besides being more comfortable to execute, than at 9 and 12 hs in leaves to the sun and, in particular, than that of xylem potential, at 12 hs, which also requires the pre‐bagging of the measuring leaf. Therefore, the measurement of water potential at 7 hs in leaves on the shaded side is interesting as a practical indicator of the water status of the vineyard.

 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Jesus YUSTE (1), Daniel MARTINEZ‐PORRO (1)

(1) Instituto tecnologico agrario de castilla y Leon, Ctra. Burgos km 119, 47071 Valladolid, Spain

Contact the author

Keywords

Leaf, Pressure chamber, Shade, Sunlight, Xylem

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Drought lessons: long-term effects of climate, soil characteristics, and deficit irrigation on yield and quality under high atmospheric demand in the Douro Region

Global warming is one of the biggest environmental, social and economic threats in several viticultural regions. In the Douro Valley, changes are expected in the coming years, namely an increase in temperature and a decrease in precipitation. These changes are likely to have consequences for the production and quality of wine.

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci. 22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.