Macrowine 2021
IVES 9 IVES Conference Series 9 IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

Abstract

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA). The analyses of polyphenols and IBMP in model wine were all performed in 10ml vial flasks with volumes of 1ml of model wine volume. IBMP was quantified in Single Ion Monitoring (SIM) mode. The ions used for SIM mode were m/z 94, 121, 154. All the solutions were at fixed pH and ethanol concentration (pH 3.5, 12% Ethanol). For each experiment a control of IBMP, polyphenol, a blank and a mix between IBMP and polyphenol were prepared. 2. Sensory Analysis: Triangular tests were performed by trained panelists (n=26) to orthonasally differentiate between IBMP on its own and IBMP in the presence of a polyphenol. 3. NMR Spectroscopy : Spectra were performed on an Agilent 500 MHz DD2 NMR spectrometer (Agilent Technologies, Santa Clara, CA, USA).Titrations of polyphenols were obtained by addition of IBMP solubilized in CD3OD (~200mM) to quercetin or polydatin (~20mM) CD3OD solution. Absolute concentrations of both aroma and polyphenols were accurately determined from the surface integration of well-separated 1D 1H signal using qNMR method. Results: 1. The headspace analysis showed that polydatin and quercetin decreased the volatility of IBMP. 2. Compared to the control (IBMP without polyphenol), significant results were found in sensory analysis (triangular tests) for polytadin (P < 0030) and quercetin (P < 0000) in presence of IBMP at 8 ng/L in model wine solution 3. Variations in NMR 1H chemical shifts were observed in titration experiments which suggest different possible sites for the interactions of IBMP with the polyphenols

[1] D. Sidhu, J.Lund, Y. Kotseridis, C.Saucier (2015). Methoxypyrazine Analysis and influence of Viticultural and Enological Procedures on their Levels in Grapes, Musts, and Wines, Critical reviews in Food Science and Nutrition, 55:4, 485-502, [2]. Aronson, J., & Ebeler, S. E. (2004). Effect of polyphenol compounds on the headspace volatility of flavors. American Journal of Enology and Viticulture, 55 :1, 13-21.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Cédric Saucier*, Audrey Bloem, Christine Le Guernevé, Damien Lorenzi, Elizabeth Johansson Filote, Nicolas Bouvier, Peggy Rigou, Veronique Cheynier

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.