Macrowine 2021
IVES 9 IVES Conference Series 9 IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

Abstract

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA). The analyses of polyphenols and IBMP in model wine were all performed in 10ml vial flasks with volumes of 1ml of model wine volume. IBMP was quantified in Single Ion Monitoring (SIM) mode. The ions used for SIM mode were m/z 94, 121, 154. All the solutions were at fixed pH and ethanol concentration (pH 3.5, 12% Ethanol). For each experiment a control of IBMP, polyphenol, a blank and a mix between IBMP and polyphenol were prepared. 2. Sensory Analysis: Triangular tests were performed by trained panelists (n=26) to orthonasally differentiate between IBMP on its own and IBMP in the presence of a polyphenol. 3. NMR Spectroscopy : Spectra were performed on an Agilent 500 MHz DD2 NMR spectrometer (Agilent Technologies, Santa Clara, CA, USA).Titrations of polyphenols were obtained by addition of IBMP solubilized in CD3OD (~200mM) to quercetin or polydatin (~20mM) CD3OD solution. Absolute concentrations of both aroma and polyphenols were accurately determined from the surface integration of well-separated 1D 1H signal using qNMR method. Results: 1. The headspace analysis showed that polydatin and quercetin decreased the volatility of IBMP. 2. Compared to the control (IBMP without polyphenol), significant results were found in sensory analysis (triangular tests) for polytadin (P < 0030) and quercetin (P < 0000) in presence of IBMP at 8 ng/L in model wine solution 3. Variations in NMR 1H chemical shifts were observed in titration experiments which suggest different possible sites for the interactions of IBMP with the polyphenols

[1] D. Sidhu, J.Lund, Y. Kotseridis, C.Saucier (2015). Methoxypyrazine Analysis and influence of Viticultural and Enological Procedures on their Levels in Grapes, Musts, and Wines, Critical reviews in Food Science and Nutrition, 55:4, 485-502, [2]. Aronson, J., & Ebeler, S. E. (2004). Effect of polyphenol compounds on the headspace volatility of flavors. American Journal of Enology and Viticulture, 55 :1, 13-21.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Cédric Saucier*, Audrey Bloem, Christine Le Guernevé, Damien Lorenzi, Elizabeth Johansson Filote, Nicolas Bouvier, Peggy Rigou, Veronique Cheynier

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.

Grape byproducts as source of resveratrol oligomers for the development of antifungal extracts

Grape canes are a non-recycled byproduct of wine industry (1-5 tons per hectare per year) containing valuable phytochemicals of medicine and agronomical interest. Resveratrol and wine polyphenols are known to exert a plethora of health-promoting effects including antioxidant capacity, cardioprotection, anticancer activity, anti-inflammatory effects, and estrogenic/antiestrogenic properties (Guerrero et al. 2009). Additionally, resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance (Chang et al. 2011). Our project aims to develop polyphenol-rich grape cane extracts to fight phytopathogenic or clinically relevant fungi. We initiate the project with the development of analytical methods to analyze resveratrol mono- and oligomers (dimers, trimers and tetramers) from grape canes and we evaluate their potential activity against clinically relevant opportunistic fungal pathogens (Houillé et al. 2014).