Macrowine 2021
IVES 9 IVES Conference Series 9 IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

Abstract

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA). The analyses of polyphenols and IBMP in model wine were all performed in 10ml vial flasks with volumes of 1ml of model wine volume. IBMP was quantified in Single Ion Monitoring (SIM) mode. The ions used for SIM mode were m/z 94, 121, 154. All the solutions were at fixed pH and ethanol concentration (pH 3.5, 12% Ethanol). For each experiment a control of IBMP, polyphenol, a blank and a mix between IBMP and polyphenol were prepared. 2. Sensory Analysis: Triangular tests were performed by trained panelists (n=26) to orthonasally differentiate between IBMP on its own and IBMP in the presence of a polyphenol. 3. NMR Spectroscopy : Spectra were performed on an Agilent 500 MHz DD2 NMR spectrometer (Agilent Technologies, Santa Clara, CA, USA).Titrations of polyphenols were obtained by addition of IBMP solubilized in CD3OD (~200mM) to quercetin or polydatin (~20mM) CD3OD solution. Absolute concentrations of both aroma and polyphenols were accurately determined from the surface integration of well-separated 1D 1H signal using qNMR method. Results: 1. The headspace analysis showed that polydatin and quercetin decreased the volatility of IBMP. 2. Compared to the control (IBMP without polyphenol), significant results were found in sensory analysis (triangular tests) for polytadin (P < 0030) and quercetin (P < 0000) in presence of IBMP at 8 ng/L in model wine solution 3. Variations in NMR 1H chemical shifts were observed in titration experiments which suggest different possible sites for the interactions of IBMP with the polyphenols

[1] D. Sidhu, J.Lund, Y. Kotseridis, C.Saucier (2015). Methoxypyrazine Analysis and influence of Viticultural and Enological Procedures on their Levels in Grapes, Musts, and Wines, Critical reviews in Food Science and Nutrition, 55:4, 485-502, [2]. Aronson, J., & Ebeler, S. E. (2004). Effect of polyphenol compounds on the headspace volatility of flavors. American Journal of Enology and Viticulture, 55 :1, 13-21.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Cédric Saucier*, Audrey Bloem, Christine Le Guernevé, Damien Lorenzi, Elizabeth Johansson Filote, Nicolas Bouvier, Peggy Rigou, Veronique Cheynier

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.