Macrowine 2021
IVES 9 IVES Conference Series 9 IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

Abstract

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA). The analyses of polyphenols and IBMP in model wine were all performed in 10ml vial flasks with volumes of 1ml of model wine volume. IBMP was quantified in Single Ion Monitoring (SIM) mode. The ions used for SIM mode were m/z 94, 121, 154. All the solutions were at fixed pH and ethanol concentration (pH 3.5, 12% Ethanol). For each experiment a control of IBMP, polyphenol, a blank and a mix between IBMP and polyphenol were prepared. 2. Sensory Analysis: Triangular tests were performed by trained panelists (n=26) to orthonasally differentiate between IBMP on its own and IBMP in the presence of a polyphenol. 3. NMR Spectroscopy : Spectra were performed on an Agilent 500 MHz DD2 NMR spectrometer (Agilent Technologies, Santa Clara, CA, USA).Titrations of polyphenols were obtained by addition of IBMP solubilized in CD3OD (~200mM) to quercetin or polydatin (~20mM) CD3OD solution. Absolute concentrations of both aroma and polyphenols were accurately determined from the surface integration of well-separated 1D 1H signal using qNMR method. Results: 1. The headspace analysis showed that polydatin and quercetin decreased the volatility of IBMP. 2. Compared to the control (IBMP without polyphenol), significant results were found in sensory analysis (triangular tests) for polytadin (P < 0030) and quercetin (P < 0000) in presence of IBMP at 8 ng/L in model wine solution 3. Variations in NMR 1H chemical shifts were observed in titration experiments which suggest different possible sites for the interactions of IBMP with the polyphenols

[1] D. Sidhu, J.Lund, Y. Kotseridis, C.Saucier (2015). Methoxypyrazine Analysis and influence of Viticultural and Enological Procedures on their Levels in Grapes, Musts, and Wines, Critical reviews in Food Science and Nutrition, 55:4, 485-502, [2]. Aronson, J., & Ebeler, S. E. (2004). Effect of polyphenol compounds on the headspace volatility of flavors. American Journal of Enology and Viticulture, 55 :1, 13-21.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Cédric Saucier*, Audrey Bloem, Christine Le Guernevé, Damien Lorenzi, Elizabeth Johansson Filote, Nicolas Bouvier, Peggy Rigou, Veronique Cheynier

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).