Macrowine 2021
IVES 9 IVES Conference Series 9 How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

Abstract

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method. The experimental design included 12 different wines from five different cultivars. The wines (n=12×20) were bottled at the same industrial bottling line, then stored for 60 days at room temperature. Half of the bottles were filled using the standard process with inert headspace, and sealed with a synthetic coextruded stopper allowing lower oxygen ingress, resulting in a total package oxygen (TPO) in the range 1.30 – 4.25 ppm O2. The other half of the bottles were filled without inert gas and with extra headspace, and sealed with a synthetic coextruded stopper allowing higher oxygen ingress, resulting in TPO 5.93 – 8.38 ppm O2. After storage, the wines were analysed using an untargeted LC-ESI-QTOF MS method, optimised for wine metabolomics, to obtain the widest coverage of the metabolic space of non-volatiles [1]. This experiment produced a dataset with over 20,000 features, and data analysis showed the presence of about 35 putative markers induced by different amounts of oxygen. These metabolite markers included ascorbic acid, tartaric acid and various sulfonated compounds. Thus, the antioxidant SO2 takes part in various reactions, modulated by the presence of oxygen, several of which were unknown in wine to date and would appear to be of practical significance. Specifically, the sulfonated derivatives of indole-3-lactic hexoside, tryptophol, glutathione, cysteine and pantetheine were detected in wine for the first time, thanks to the untargeted metabolomics approach chosen. These findings explains why glutathione disulfide is not detectable in wines, due to its preferential antagonistic reaction with SO2. Further studies of the mechanisms involved in such reactions and the inclusion of selected SO2-binding compounds in the routinely quality control of wines could help to decrease SO2 addition in wine, and make smarter use of the various oenological antioxidants in correlation with varietal information, the amount of total package oxygen and the choice of stopper. Acknowledgments The authors thank Nomacorc for its financial support and the MezzaCorona winery for the wines, bottling and storage.

Reference [1] Arapitsas, P. et al., Journal of Chromatography A, 2016, 1429, 155-165

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Fulvio Mattivi*, Andrea Angeli, Daniele Perenzoni, Maurizio Ugliano, Panagiotis Arapitsas, Paolo Pangrazzi

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.