Macrowine 2021
IVES 9 IVES Conference Series 9 How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

Abstract

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method. The experimental design included 12 different wines from five different cultivars. The wines (n=12×20) were bottled at the same industrial bottling line, then stored for 60 days at room temperature. Half of the bottles were filled using the standard process with inert headspace, and sealed with a synthetic coextruded stopper allowing lower oxygen ingress, resulting in a total package oxygen (TPO) in the range 1.30 – 4.25 ppm O2. The other half of the bottles were filled without inert gas and with extra headspace, and sealed with a synthetic coextruded stopper allowing higher oxygen ingress, resulting in TPO 5.93 – 8.38 ppm O2. After storage, the wines were analysed using an untargeted LC-ESI-QTOF MS method, optimised for wine metabolomics, to obtain the widest coverage of the metabolic space of non-volatiles [1]. This experiment produced a dataset with over 20,000 features, and data analysis showed the presence of about 35 putative markers induced by different amounts of oxygen. These metabolite markers included ascorbic acid, tartaric acid and various sulfonated compounds. Thus, the antioxidant SO2 takes part in various reactions, modulated by the presence of oxygen, several of which were unknown in wine to date and would appear to be of practical significance. Specifically, the sulfonated derivatives of indole-3-lactic hexoside, tryptophol, glutathione, cysteine and pantetheine were detected in wine for the first time, thanks to the untargeted metabolomics approach chosen. These findings explains why glutathione disulfide is not detectable in wines, due to its preferential antagonistic reaction with SO2. Further studies of the mechanisms involved in such reactions and the inclusion of selected SO2-binding compounds in the routinely quality control of wines could help to decrease SO2 addition in wine, and make smarter use of the various oenological antioxidants in correlation with varietal information, the amount of total package oxygen and the choice of stopper. Acknowledgments The authors thank Nomacorc for its financial support and the MezzaCorona winery for the wines, bottling and storage.

Reference [1] Arapitsas, P. et al., Journal of Chromatography A, 2016, 1429, 155-165

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Fulvio Mattivi*, Andrea Angeli, Daniele Perenzoni, Maurizio Ugliano, Panagiotis Arapitsas, Paolo Pangrazzi

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.