Macrowine 2021
IVES 9 IVES Conference Series 9 How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

Abstract

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method. The experimental design included 12 different wines from five different cultivars. The wines (n=12×20) were bottled at the same industrial bottling line, then stored for 60 days at room temperature. Half of the bottles were filled using the standard process with inert headspace, and sealed with a synthetic coextruded stopper allowing lower oxygen ingress, resulting in a total package oxygen (TPO) in the range 1.30 – 4.25 ppm O2. The other half of the bottles were filled without inert gas and with extra headspace, and sealed with a synthetic coextruded stopper allowing higher oxygen ingress, resulting in TPO 5.93 – 8.38 ppm O2. After storage, the wines were analysed using an untargeted LC-ESI-QTOF MS method, optimised for wine metabolomics, to obtain the widest coverage of the metabolic space of non-volatiles [1]. This experiment produced a dataset with over 20,000 features, and data analysis showed the presence of about 35 putative markers induced by different amounts of oxygen. These metabolite markers included ascorbic acid, tartaric acid and various sulfonated compounds. Thus, the antioxidant SO2 takes part in various reactions, modulated by the presence of oxygen, several of which were unknown in wine to date and would appear to be of practical significance. Specifically, the sulfonated derivatives of indole-3-lactic hexoside, tryptophol, glutathione, cysteine and pantetheine were detected in wine for the first time, thanks to the untargeted metabolomics approach chosen. These findings explains why glutathione disulfide is not detectable in wines, due to its preferential antagonistic reaction with SO2. Further studies of the mechanisms involved in such reactions and the inclusion of selected SO2-binding compounds in the routinely quality control of wines could help to decrease SO2 addition in wine, and make smarter use of the various oenological antioxidants in correlation with varietal information, the amount of total package oxygen and the choice of stopper. Acknowledgments The authors thank Nomacorc for its financial support and the MezzaCorona winery for the wines, bottling and storage.

Reference [1] Arapitsas, P. et al., Journal of Chromatography A, 2016, 1429, 155-165

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Fulvio Mattivi*, Andrea Angeli, Daniele Perenzoni, Maurizio Ugliano, Panagiotis Arapitsas, Paolo Pangrazzi

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.