Macrowine 2021
IVES 9 IVES Conference Series 9 How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

Abstract

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method. The experimental design included 12 different wines from five different cultivars. The wines (n=12×20) were bottled at the same industrial bottling line, then stored for 60 days at room temperature. Half of the bottles were filled using the standard process with inert headspace, and sealed with a synthetic coextruded stopper allowing lower oxygen ingress, resulting in a total package oxygen (TPO) in the range 1.30 – 4.25 ppm O2. The other half of the bottles were filled without inert gas and with extra headspace, and sealed with a synthetic coextruded stopper allowing higher oxygen ingress, resulting in TPO 5.93 – 8.38 ppm O2. After storage, the wines were analysed using an untargeted LC-ESI-QTOF MS method, optimised for wine metabolomics, to obtain the widest coverage of the metabolic space of non-volatiles [1]. This experiment produced a dataset with over 20,000 features, and data analysis showed the presence of about 35 putative markers induced by different amounts of oxygen. These metabolite markers included ascorbic acid, tartaric acid and various sulfonated compounds. Thus, the antioxidant SO2 takes part in various reactions, modulated by the presence of oxygen, several of which were unknown in wine to date and would appear to be of practical significance. Specifically, the sulfonated derivatives of indole-3-lactic hexoside, tryptophol, glutathione, cysteine and pantetheine were detected in wine for the first time, thanks to the untargeted metabolomics approach chosen. These findings explains why glutathione disulfide is not detectable in wines, due to its preferential antagonistic reaction with SO2. Further studies of the mechanisms involved in such reactions and the inclusion of selected SO2-binding compounds in the routinely quality control of wines could help to decrease SO2 addition in wine, and make smarter use of the various oenological antioxidants in correlation with varietal information, the amount of total package oxygen and the choice of stopper. Acknowledgments The authors thank Nomacorc for its financial support and the MezzaCorona winery for the wines, bottling and storage.

Reference [1] Arapitsas, P. et al., Journal of Chromatography A, 2016, 1429, 155-165

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Fulvio Mattivi*, Andrea Angeli, Daniele Perenzoni, Maurizio Ugliano, Panagiotis Arapitsas, Paolo Pangrazzi

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.