Macrowine 2021
IVES 9 IVES Conference Series 9 Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Abstract

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine. The concentration of dissolved CO2 reached at the end of the “prise de mousse” is also a parameter of importance since it directly impacts the following properties: the visually appealing frequency of bubble formation in the glass, the growth rate of rising bubbles, the tingling sensation in mouth and the aromatic perception of Champagne and sparkling wines. In recent years, much interest has been devoted to better understand and depict each and every parameter involved in the release of gaseous CO2 from glasses poured with champagne or sparkling wines. Here, the impact of yeast macromolecules on the progressive losses of dissolved CO2 was closely examined, under standard tasting conditions. A Rosé sparkling wine was elaborated according to the traditional method and divided into different batches after the first alcoholic fermentation. Each wine was then supplemented with distinct preparations of yeast macromolecules before the second fermentation. Dissolved CO2 concentrations, fluxes of gaseous CO2 escaping from these Rosé sparkling wines served in standard laser-etched flutes, were simultaneously monitored, all along the first 10 min following pouring. The contribution of each yeast preparation to the collar height was also evaluated under the same tasting conditions.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Clara Cilindre*, Barbara Poty, Eric Ruppé, Gérard Liger-Belair, Néréa Iturmendi, Virginie Moine

*Equipe Effervescence – GSMA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.