Macrowine 2021
IVES 9 IVES Conference Series 9 Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Abstract

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine. The concentration of dissolved CO2 reached at the end of the “prise de mousse” is also a parameter of importance since it directly impacts the following properties: the visually appealing frequency of bubble formation in the glass, the growth rate of rising bubbles, the tingling sensation in mouth and the aromatic perception of Champagne and sparkling wines. In recent years, much interest has been devoted to better understand and depict each and every parameter involved in the release of gaseous CO2 from glasses poured with champagne or sparkling wines. Here, the impact of yeast macromolecules on the progressive losses of dissolved CO2 was closely examined, under standard tasting conditions. A Rosé sparkling wine was elaborated according to the traditional method and divided into different batches after the first alcoholic fermentation. Each wine was then supplemented with distinct preparations of yeast macromolecules before the second fermentation. Dissolved CO2 concentrations, fluxes of gaseous CO2 escaping from these Rosé sparkling wines served in standard laser-etched flutes, were simultaneously monitored, all along the first 10 min following pouring. The contribution of each yeast preparation to the collar height was also evaluated under the same tasting conditions.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Clara Cilindre*, Barbara Poty, Eric Ruppé, Gérard Liger-Belair, Néréa Iturmendi, Virginie Moine

*Equipe Effervescence – GSMA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.