Macrowine 2021
IVES 9 IVES Conference Series 9 Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Abstract

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed. A classical method to produce regional Vipava valley young, fresh type of red wine was thus tested in comparison with carbonic maceration technique on the grapes from Merlot. This variety is of global, but also vast local importance as it is the most abundant red variety of the valley. The grapes first underwent separate processing and winemaking treatments, operating with 100 L volume in triplicates. After bottling, the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS. In addition, a sensorial evaluation of finished wines was performed to disclose the outcomes more from the consumer perspective. The results of free VOCs in wines produced by classical approach showed higher concentrations of 2 phenyl ethanol, n-hexanol, isobutanol and isoamyl alcohol, whereas the wines from grapes processed by carbonic maceration (CM) contained more aromatic acids (decanoic, octanoic, butyric), isopentylacetate and ethyl lactate. When observing bound VOCs, CM wines mainly indicated more alcohols (1-octanol, 1 nonanol, 1 hexanol, 1 pentanol, 1 butanol, 3-phenylpropan-1-ol and isoamyl alcohol), whereas classically produced wines contained more benzenoids (e.g. acetovanillone, vanillylacetone and some aldehydes, esters and alcohols (e.g. homovanillyl alcohol, benzyl alcohol). Sensory evaluation mainly supported the analytical results but also implied which compounds may deserve a special attention in further studies. In conclusion, a targeted metabolomics approach was shown to be a very useful tool in gaining a novel, more complex knowledge and understanding of aroma-related potential, manipulated by different winemaking processes. Key words: alternative vinification procedures, carbonic maceration, Merlot, free aroma compounds, bound aroma compounds, targeted metabolomics.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Melita Sternad Lemut*, Cesare Lotti, Urska Vrhovsek

*University of Nova Gorica

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).