Macrowine 2021
IVES 9 IVES Conference Series 9 Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Abstract

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed. A classical method to produce regional Vipava valley young, fresh type of red wine was thus tested in comparison with carbonic maceration technique on the grapes from Merlot. This variety is of global, but also vast local importance as it is the most abundant red variety of the valley. The grapes first underwent separate processing and winemaking treatments, operating with 100 L volume in triplicates. After bottling, the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS. In addition, a sensorial evaluation of finished wines was performed to disclose the outcomes more from the consumer perspective. The results of free VOCs in wines produced by classical approach showed higher concentrations of 2 phenyl ethanol, n-hexanol, isobutanol and isoamyl alcohol, whereas the wines from grapes processed by carbonic maceration (CM) contained more aromatic acids (decanoic, octanoic, butyric), isopentylacetate and ethyl lactate. When observing bound VOCs, CM wines mainly indicated more alcohols (1-octanol, 1 nonanol, 1 hexanol, 1 pentanol, 1 butanol, 3-phenylpropan-1-ol and isoamyl alcohol), whereas classically produced wines contained more benzenoids (e.g. acetovanillone, vanillylacetone and some aldehydes, esters and alcohols (e.g. homovanillyl alcohol, benzyl alcohol). Sensory evaluation mainly supported the analytical results but also implied which compounds may deserve a special attention in further studies. In conclusion, a targeted metabolomics approach was shown to be a very useful tool in gaining a novel, more complex knowledge and understanding of aroma-related potential, manipulated by different winemaking processes. Key words: alternative vinification procedures, carbonic maceration, Merlot, free aroma compounds, bound aroma compounds, targeted metabolomics.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Melita Sternad Lemut*, Cesare Lotti, Urska Vrhovsek

*University of Nova Gorica

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.