Macrowine 2021
IVES 9 IVES Conference Series 9 Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Abstract

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed. A classical method to produce regional Vipava valley young, fresh type of red wine was thus tested in comparison with carbonic maceration technique on the grapes from Merlot. This variety is of global, but also vast local importance as it is the most abundant red variety of the valley. The grapes first underwent separate processing and winemaking treatments, operating with 100 L volume in triplicates. After bottling, the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS. In addition, a sensorial evaluation of finished wines was performed to disclose the outcomes more from the consumer perspective. The results of free VOCs in wines produced by classical approach showed higher concentrations of 2 phenyl ethanol, n-hexanol, isobutanol and isoamyl alcohol, whereas the wines from grapes processed by carbonic maceration (CM) contained more aromatic acids (decanoic, octanoic, butyric), isopentylacetate and ethyl lactate. When observing bound VOCs, CM wines mainly indicated more alcohols (1-octanol, 1 nonanol, 1 hexanol, 1 pentanol, 1 butanol, 3-phenylpropan-1-ol and isoamyl alcohol), whereas classically produced wines contained more benzenoids (e.g. acetovanillone, vanillylacetone and some aldehydes, esters and alcohols (e.g. homovanillyl alcohol, benzyl alcohol). Sensory evaluation mainly supported the analytical results but also implied which compounds may deserve a special attention in further studies. In conclusion, a targeted metabolomics approach was shown to be a very useful tool in gaining a novel, more complex knowledge and understanding of aroma-related potential, manipulated by different winemaking processes. Key words: alternative vinification procedures, carbonic maceration, Merlot, free aroma compounds, bound aroma compounds, targeted metabolomics.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Melita Sternad Lemut*, Cesare Lotti, Urska Vrhovsek

*University of Nova Gorica

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.