Macrowine 2021
IVES 9 IVES Conference Series 9 Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Abstract

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed. A classical method to produce regional Vipava valley young, fresh type of red wine was thus tested in comparison with carbonic maceration technique on the grapes from Merlot. This variety is of global, but also vast local importance as it is the most abundant red variety of the valley. The grapes first underwent separate processing and winemaking treatments, operating with 100 L volume in triplicates. After bottling, the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS. In addition, a sensorial evaluation of finished wines was performed to disclose the outcomes more from the consumer perspective. The results of free VOCs in wines produced by classical approach showed higher concentrations of 2 phenyl ethanol, n-hexanol, isobutanol and isoamyl alcohol, whereas the wines from grapes processed by carbonic maceration (CM) contained more aromatic acids (decanoic, octanoic, butyric), isopentylacetate and ethyl lactate. When observing bound VOCs, CM wines mainly indicated more alcohols (1-octanol, 1 nonanol, 1 hexanol, 1 pentanol, 1 butanol, 3-phenylpropan-1-ol and isoamyl alcohol), whereas classically produced wines contained more benzenoids (e.g. acetovanillone, vanillylacetone and some aldehydes, esters and alcohols (e.g. homovanillyl alcohol, benzyl alcohol). Sensory evaluation mainly supported the analytical results but also implied which compounds may deserve a special attention in further studies. In conclusion, a targeted metabolomics approach was shown to be a very useful tool in gaining a novel, more complex knowledge and understanding of aroma-related potential, manipulated by different winemaking processes. Key words: alternative vinification procedures, carbonic maceration, Merlot, free aroma compounds, bound aroma compounds, targeted metabolomics.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Melita Sternad Lemut*, Cesare Lotti, Urska Vrhovsek

*University of Nova Gorica

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.