GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Treated wastewater irrigation: how to manage water salinity without reducing its nutrients content?

Treated wastewater irrigation: how to manage water salinity without reducing its nutrients content?

Abstract

Context and purpose of the study ‐ Nutrients in municipal treated wastewater (N, P, K, mainly) are a particular advantage in this source over conventional irrigation water sources, so supplemental fertilizers would sometimes not be necessary. However, additional environmental and health requirements are taken into account for this source of irrigation water. Most treated wastewaters are not very saline. Salinity levels usually ranging between 500 and 2000 mg/L (ECw = 0.7 to 3.0 dS/m). However, there may be instances where the salinity concentration exceeds the 2000 mg/L. Anyway, appropriate water management practices should be followed to prevent soil salinization, regardless of the salt content of the treated wastewater and plant sensibility. The ability of soil to self–cleanse in each rain event decreases the salinity supplied with treated wastewater, but this will depend on the balance between supply‐water and rain‐water. The aims of this study were to assess the effect of fertigation with municipal treated wastewater, on the soil‐plant‐fruit‐ wine system and the need, in some cases, to control salinity thresholds (Na + and Cl‐ ions) of irrigation water by membrane technology.

Material and methods ‐ Two experimental vineyards of Viognier B and Carignan N. were monitored for growing seasons 2017 and 2018. Two different water sources were compared: drinking water (DW) and municipal treated wastewater (TWW) at two irrigation levels by drip irrigation system. Vegetative growth was monitored once a week. Berry fresh weight and juice composition (primary metabolites) were determined at harvest. Soil sampling was carried out at postharvest for analytical determinations. Given that, in the event of low rainfall, excess sodium and chloride resulting from irrigation with TWW are not leached from the soil. This paper looks at the process membrane technology, most adapted by which salt levels in irrigation water can be reduced.

Results ‐ TWW played a substantial role in the shoot growth and the variation of irrigation level caused significant difference compared to the irrigation with DW. Moreover, yeast assimilable nitrogen was higher in grapes from vines irrigated with TWW. Wine sensorial quality was mainly influenced by irrigation levels. Results showed a higher Na 2O content in soils that have received TWW. Success in using TWW for crop production will largely depend on adopting appropriate strategies aimed at optimizing crop yields and quality, maintaining soil productivity and safeguarding the environment. Electrodialysis, from homogeneous membranes technologies does not filter the water, but extracts a quantity controllable in line of dissolved salts (Na+ and Cl‐ in particular selectable) under the effect of an electric field, in order to adapt to the soil or crop concerned. In the context of vineyard sustainability and an eco‐responsible approach, electrodialysis can be seen as an agricultural water treatment technology reliable and fit for purpose. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Flor ETCHEBARNE (1), Hernán OJEDA (2), Florence LUTIN (3), Bernard GILLERY (3), Jean‐Louis ESCUDIER (2)

(1) Independent Scientist, F-11560 Saint Pierre la Mer, France
(2) UE PECH-ROUGE, INRA, Université de Montpellier, CIRAD, Montpellier SupAgro, F-11430, Gruissan, France
(3) EURODIA, Chemin de Saint-Martin, F-84120 Pertuis, France

Contact the author

Keywords

Grapevine, irrigation, treated wastewater, fertigation, control water salinity, electrodialysis

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

ÂThe natural abundance of carbon stable isotopes has been reported to be related to water availability in grapevines quite widely. In the case of nitrogen, the natural abundance of its stable isotopes is mainly affected by the nature of the source of nitrogen (organic vs. inorganic) used by the plant, though the bibliography available for grapevine is very scarce.

Grapevine nitrogen status: correlation between chlorophyll indices n-tester and spadGrapevine nitrogen status

Knowledge of the nitrogen nutrition status of grapevines is essential for the sustainable management of their nutrition for the production of quality grapes. The measurement of the chlorophyll index is a rapid, non-destructive and relatively inexpensive method that provides a good approximation of the nitrogen nutrition status of the vine during the season. Interpretation thresholds are currently insufficient or non-existent for some chlorophyll meters. Ideally, they should be available for each variety and each phenological stage. In order to popularize the use of chlorophyll-meters, measurements were carried out at Agroscope in Switzerland to establish the correlation between the indices obtained by the devices N-tester and SPAD 502.

Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas).