GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Treated wastewater irrigation: how to manage water salinity without reducing its nutrients content?

Treated wastewater irrigation: how to manage water salinity without reducing its nutrients content?

Abstract

Context and purpose of the study ‐ Nutrients in municipal treated wastewater (N, P, K, mainly) are a particular advantage in this source over conventional irrigation water sources, so supplemental fertilizers would sometimes not be necessary. However, additional environmental and health requirements are taken into account for this source of irrigation water. Most treated wastewaters are not very saline. Salinity levels usually ranging between 500 and 2000 mg/L (ECw = 0.7 to 3.0 dS/m). However, there may be instances where the salinity concentration exceeds the 2000 mg/L. Anyway, appropriate water management practices should be followed to prevent soil salinization, regardless of the salt content of the treated wastewater and plant sensibility. The ability of soil to self–cleanse in each rain event decreases the salinity supplied with treated wastewater, but this will depend on the balance between supply‐water and rain‐water. The aims of this study were to assess the effect of fertigation with municipal treated wastewater, on the soil‐plant‐fruit‐ wine system and the need, in some cases, to control salinity thresholds (Na + and Cl‐ ions) of irrigation water by membrane technology.

Material and methods ‐ Two experimental vineyards of Viognier B and Carignan N. were monitored for growing seasons 2017 and 2018. Two different water sources were compared: drinking water (DW) and municipal treated wastewater (TWW) at two irrigation levels by drip irrigation system. Vegetative growth was monitored once a week. Berry fresh weight and juice composition (primary metabolites) were determined at harvest. Soil sampling was carried out at postharvest for analytical determinations. Given that, in the event of low rainfall, excess sodium and chloride resulting from irrigation with TWW are not leached from the soil. This paper looks at the process membrane technology, most adapted by which salt levels in irrigation water can be reduced.

Results ‐ TWW played a substantial role in the shoot growth and the variation of irrigation level caused significant difference compared to the irrigation with DW. Moreover, yeast assimilable nitrogen was higher in grapes from vines irrigated with TWW. Wine sensorial quality was mainly influenced by irrigation levels. Results showed a higher Na 2O content in soils that have received TWW. Success in using TWW for crop production will largely depend on adopting appropriate strategies aimed at optimizing crop yields and quality, maintaining soil productivity and safeguarding the environment. Electrodialysis, from homogeneous membranes technologies does not filter the water, but extracts a quantity controllable in line of dissolved salts (Na+ and Cl‐ in particular selectable) under the effect of an electric field, in order to adapt to the soil or crop concerned. In the context of vineyard sustainability and an eco‐responsible approach, electrodialysis can be seen as an agricultural water treatment technology reliable and fit for purpose. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Flor ETCHEBARNE (1), Hernán OJEDA (2), Florence LUTIN (3), Bernard GILLERY (3), Jean‐Louis ESCUDIER (2)

(1) Independent Scientist, F-11560 Saint Pierre la Mer, France
(2) UE PECH-ROUGE, INRA, Université de Montpellier, CIRAD, Montpellier SupAgro, F-11430, Gruissan, France
(3) EURODIA, Chemin de Saint-Martin, F-84120 Pertuis, France

Contact the author

Keywords

Grapevine, irrigation, treated wastewater, fertigation, control water salinity, electrodialysis

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Terroir factors causing sensory and chemical variation in Riesling wines

The term “terroir”, originated in France, comprises the interaction of soil, climate, and topography with the vines of a specific variety and may be extended to the human impact due to the active choice of viticultural and oenological treatments.

Évaluation environnementale de pratiques vitivinicoles innovantes

The Institut Français De La Vigne Et Du Vin (IFV) is conducting many experiments on innovative winegrowing practices, which are emerging in companies in the sector, or which are still at the R&D stage for agricultural suppliers. The purpose of these practices may be to reduce environmental impact, to adapt vineyards to climate change, or to achieve other technical, economic or social aims. Whatever the objective, it is necessary to verify the relevance of these new practices, and in particular their environmental relevance, i.e. That at the very least, the changes in practices do not increase the environmental impact of the technical itineraries.

Oxygen consumption and changes in chemical composition of young wines

The study of the capacity to consume oxygen of the wines is an aspect of great interest since it allows to analyse their useful life.

Biodiversity and genetic profiling of autochthonous grapevine varieties in Armenia: A key to sustainable viticulture

Armenia, as one of the ancient centers of grapevine domestication, harbors a unique repository of genetic diversity in its indigenous and wild grapevine populations, highlighting a key role in the millennia-lasting history of grape cultivation in the Southern Caucasus (Margaryan et al., 2021).