Macrowine 2021
IVES 9 IVES Conference Series 9 Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Abstract

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN. A spatial investigation of Shiraz wines fermented in triplicates from grapes collected from climatically diverse (warm/hot versus cold/temperate) regions of Australia (New South Wales) was made using HS-SPME followed by GCxGC-Tof-MS. Wine volatile profiles from warm/hot and cool/temperate climate could be distinguished according to the first two principal components. Wines from cool/temperate climate were characterised by higher levels of several terpenes such as alpha terpineol, linalool oxide, citronellol acetate, 1-p-menthen-9-al, cis-rose oxide, ho-trienol) and sesquiterpenes, whereas trend for norispoprenoids was less consistent. Higher TDN levels in wines from warm/hot climate were observed. Volatile composition of wines from four grape cultivars was investigated with GCxGC Tof-MS in association with multivariate analyses. Eighteen samples of Müller Thurgau, 48 samples of Pinot Gris, 36 samples of Chardonnay and 18 samples of Gewürztraminer were analyzed. A clear varietal differentiation according to the wine volatiles was affirmed by PCA and potential cultivar-specific biomarkers were identified.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Silvia Carlin*, Fulvio Mattivi, Katjia Suklje, Urska Vrhovsek

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Study of the volatil profile of minority white varieties

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.