Macrowine 2021
IVES 9 IVES Conference Series 9 HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

Abstract

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins. Due to their chemical structure they are involved in the sensation of astringency / bitterness and play a key role in the quality of wines (Downey, Dokoozlian, and Krstic 2006). In a context of climate change and global warming, it is necessary to ask the question of the effect of temperature on the metabolism and its impact on wine quality. One of the goals of the HEAT BERRY project is to understand the physiological basis of the response of secondary metabolism to heat and microclimate, in grape berries, and their resulting effects on wine chemistry and organoleptic properties. A passive heating system made of polycarbonate screens has been set up at the vineyard. Field experiments conducted on Cabernet Sauvignon showed that this system induces 1 to 3°C increase in berry temperature. The heating system was set up in June at fruit set, and berries juices were sampled and used for ripening analysis between veraison and harvest time. The results of ripening agreed with previous studies: phenolic maturity and extractability of anthocyanins were decreased on heated berries. Nowadays, it is well-known that tannins nature within different berry tissues has an impact on bitterness and astringency (skins tannins mainly participate to the sensation of astringency, while seeds tannins also contribute to bitterness) as well as the percentage of each berry part. But nothing was shown about the importance of a temperature increase on these aspects. Microvinifications were performed on ripe (and over-ripe) berries. First, tastings demonstrated significant differences between wines from heated berries and non-heated berries in accordance with ripening process and berry compounds. Second, phenolics compounds (tannins levels, Dpm, tannins composition) were analyzed in berries and in wines. The analytical results will be compared with the sensory analysis in order to better understand the qualitative impact of heat treatment on berries and wine properties. Overall, the aim of HEAT BERRY is to address the poor knowledge of the effects of high temperatures on berry composition and wines. This should provide useful clues for the adaptation of viticulture to climate change.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Drappier*, Cécile Thibon, Darriet Philippe, Jing Wu, Laurence Geny-Denis, Michael Jourdes, Philippe Pieri, Robin Rabagliato, Serge Delrot

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.