Macrowine 2021
IVES 9 IVES Conference Series 9 HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

Abstract

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins. Due to their chemical structure they are involved in the sensation of astringency / bitterness and play a key role in the quality of wines (Downey, Dokoozlian, and Krstic 2006). In a context of climate change and global warming, it is necessary to ask the question of the effect of temperature on the metabolism and its impact on wine quality. One of the goals of the HEAT BERRY project is to understand the physiological basis of the response of secondary metabolism to heat and microclimate, in grape berries, and their resulting effects on wine chemistry and organoleptic properties. A passive heating system made of polycarbonate screens has been set up at the vineyard. Field experiments conducted on Cabernet Sauvignon showed that this system induces 1 to 3°C increase in berry temperature. The heating system was set up in June at fruit set, and berries juices were sampled and used for ripening analysis between veraison and harvest time. The results of ripening agreed with previous studies: phenolic maturity and extractability of anthocyanins were decreased on heated berries. Nowadays, it is well-known that tannins nature within different berry tissues has an impact on bitterness and astringency (skins tannins mainly participate to the sensation of astringency, while seeds tannins also contribute to bitterness) as well as the percentage of each berry part. But nothing was shown about the importance of a temperature increase on these aspects. Microvinifications were performed on ripe (and over-ripe) berries. First, tastings demonstrated significant differences between wines from heated berries and non-heated berries in accordance with ripening process and berry compounds. Second, phenolics compounds (tannins levels, Dpm, tannins composition) were analyzed in berries and in wines. The analytical results will be compared with the sensory analysis in order to better understand the qualitative impact of heat treatment on berries and wine properties. Overall, the aim of HEAT BERRY is to address the poor knowledge of the effects of high temperatures on berry composition and wines. This should provide useful clues for the adaptation of viticulture to climate change.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Drappier*, Cécile Thibon, Darriet Philippe, Jing Wu, Laurence Geny-Denis, Michael Jourdes, Philippe Pieri, Robin Rabagliato, Serge Delrot

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).