Macrowine 2021
IVES 9 IVES Conference Series 9 HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

Abstract

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins. Due to their chemical structure they are involved in the sensation of astringency / bitterness and play a key role in the quality of wines (Downey, Dokoozlian, and Krstic 2006). In a context of climate change and global warming, it is necessary to ask the question of the effect of temperature on the metabolism and its impact on wine quality. One of the goals of the HEAT BERRY project is to understand the physiological basis of the response of secondary metabolism to heat and microclimate, in grape berries, and their resulting effects on wine chemistry and organoleptic properties. A passive heating system made of polycarbonate screens has been set up at the vineyard. Field experiments conducted on Cabernet Sauvignon showed that this system induces 1 to 3°C increase in berry temperature. The heating system was set up in June at fruit set, and berries juices were sampled and used for ripening analysis between veraison and harvest time. The results of ripening agreed with previous studies: phenolic maturity and extractability of anthocyanins were decreased on heated berries. Nowadays, it is well-known that tannins nature within different berry tissues has an impact on bitterness and astringency (skins tannins mainly participate to the sensation of astringency, while seeds tannins also contribute to bitterness) as well as the percentage of each berry part. But nothing was shown about the importance of a temperature increase on these aspects. Microvinifications were performed on ripe (and over-ripe) berries. First, tastings demonstrated significant differences between wines from heated berries and non-heated berries in accordance with ripening process and berry compounds. Second, phenolics compounds (tannins levels, Dpm, tannins composition) were analyzed in berries and in wines. The analytical results will be compared with the sensory analysis in order to better understand the qualitative impact of heat treatment on berries and wine properties. Overall, the aim of HEAT BERRY is to address the poor knowledge of the effects of high temperatures on berry composition and wines. This should provide useful clues for the adaptation of viticulture to climate change.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Drappier*, Cécile Thibon, Darriet Philippe, Jing Wu, Laurence Geny-Denis, Michael Jourdes, Philippe Pieri, Robin Rabagliato, Serge Delrot

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.