Macrowine 2021
IVES 9 IVES Conference Series 9 HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

Abstract

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins. Due to their chemical structure they are involved in the sensation of astringency / bitterness and play a key role in the quality of wines (Downey, Dokoozlian, and Krstic 2006). In a context of climate change and global warming, it is necessary to ask the question of the effect of temperature on the metabolism and its impact on wine quality. One of the goals of the HEAT BERRY project is to understand the physiological basis of the response of secondary metabolism to heat and microclimate, in grape berries, and their resulting effects on wine chemistry and organoleptic properties. A passive heating system made of polycarbonate screens has been set up at the vineyard. Field experiments conducted on Cabernet Sauvignon showed that this system induces 1 to 3°C increase in berry temperature. The heating system was set up in June at fruit set, and berries juices were sampled and used for ripening analysis between veraison and harvest time. The results of ripening agreed with previous studies: phenolic maturity and extractability of anthocyanins were decreased on heated berries. Nowadays, it is well-known that tannins nature within different berry tissues has an impact on bitterness and astringency (skins tannins mainly participate to the sensation of astringency, while seeds tannins also contribute to bitterness) as well as the percentage of each berry part. But nothing was shown about the importance of a temperature increase on these aspects. Microvinifications were performed on ripe (and over-ripe) berries. First, tastings demonstrated significant differences between wines from heated berries and non-heated berries in accordance with ripening process and berry compounds. Second, phenolics compounds (tannins levels, Dpm, tannins composition) were analyzed in berries and in wines. The analytical results will be compared with the sensory analysis in order to better understand the qualitative impact of heat treatment on berries and wine properties. Overall, the aim of HEAT BERRY is to address the poor knowledge of the effects of high temperatures on berry composition and wines. This should provide useful clues for the adaptation of viticulture to climate change.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Julie Drappier*, Cécile Thibon, Darriet Philippe, Jing Wu, Laurence Geny-Denis, Michael Jourdes, Philippe Pieri, Robin Rabagliato, Serge Delrot

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.