Macrowine 2021
IVES 9 IVES Conference Series 9 Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

Abstract

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel (Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002). Seven Verdejo and five Tempranillo samples were classified in the highest quality category, presenting different aroma profiles such as citrus, fruit in syrup, boxtree/vegetal, tropical or wet grain aromas for Verdejo and red fruit or fruit in syrup for Tempranillo. β-damascenone, 3-mercaptohexyl acetate and ethyl butyrate appeared as distinctive quality compounds linked to dried, tropical and red fruit aromas, respectively. Categorization task followed by flash profiling and GC-O analysis has revealed to be a rapid and effective sensory-directed methodology for the screening of distinctive and quality wine aroma profiles in a case study of yeast selection. Wine industry could benefit from the use of this methodology as a complementary tool for optimizing technical processes along elaboration.

López, R., M. Aznar, et al. (2002). “Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection.” Journal of Chromatography A 966(1–2): 167-177. Sáenz-Navajas, M.-P., J. Ballester, et al. (2013). “Sensory drivers of intrinsic quality of red wines: Effect of culture and level of expertise.” Food Research International 54(2): 1506-1518. Valentin, D., S. Chollet, et al. (2012). “Quick and dirty but still pretty good: a review of new descriptive methods in food science.” International Journal of Food Science & Technology 47(8): 1563-1578.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Yohanna Alegre Martine*, Arancha De-La-Fuente, Maria Pilar Saenz-Navaja, Purificación Hernández-Orte, Vicente Ferreira

*University of Zaragoza

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.