Macrowine 2021
IVES 9 IVES Conference Series 9 Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

Abstract

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel (Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002). Seven Verdejo and five Tempranillo samples were classified in the highest quality category, presenting different aroma profiles such as citrus, fruit in syrup, boxtree/vegetal, tropical or wet grain aromas for Verdejo and red fruit or fruit in syrup for Tempranillo. β-damascenone, 3-mercaptohexyl acetate and ethyl butyrate appeared as distinctive quality compounds linked to dried, tropical and red fruit aromas, respectively. Categorization task followed by flash profiling and GC-O analysis has revealed to be a rapid and effective sensory-directed methodology for the screening of distinctive and quality wine aroma profiles in a case study of yeast selection. Wine industry could benefit from the use of this methodology as a complementary tool for optimizing technical processes along elaboration.

López, R., M. Aznar, et al. (2002). “Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection.” Journal of Chromatography A 966(1–2): 167-177. Sáenz-Navajas, M.-P., J. Ballester, et al. (2013). “Sensory drivers of intrinsic quality of red wines: Effect of culture and level of expertise.” Food Research International 54(2): 1506-1518. Valentin, D., S. Chollet, et al. (2012). “Quick and dirty but still pretty good: a review of new descriptive methods in food science.” International Journal of Food Science & Technology 47(8): 1563-1578.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Yohanna Alegre Martine*, Arancha De-La-Fuente, Maria Pilar Saenz-Navaja, Purificación Hernández-Orte, Vicente Ferreira

*University of Zaragoza

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.