Macrowine 2021
IVES 9 IVES Conference Series 9 Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

Abstract

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel (Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002). Seven Verdejo and five Tempranillo samples were classified in the highest quality category, presenting different aroma profiles such as citrus, fruit in syrup, boxtree/vegetal, tropical or wet grain aromas for Verdejo and red fruit or fruit in syrup for Tempranillo. β-damascenone, 3-mercaptohexyl acetate and ethyl butyrate appeared as distinctive quality compounds linked to dried, tropical and red fruit aromas, respectively. Categorization task followed by flash profiling and GC-O analysis has revealed to be a rapid and effective sensory-directed methodology for the screening of distinctive and quality wine aroma profiles in a case study of yeast selection. Wine industry could benefit from the use of this methodology as a complementary tool for optimizing technical processes along elaboration.

López, R., M. Aznar, et al. (2002). “Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection.” Journal of Chromatography A 966(1–2): 167-177. Sáenz-Navajas, M.-P., J. Ballester, et al. (2013). “Sensory drivers of intrinsic quality of red wines: Effect of culture and level of expertise.” Food Research International 54(2): 1506-1518. Valentin, D., S. Chollet, et al. (2012). “Quick and dirty but still pretty good: a review of new descriptive methods in food science.” International Journal of Food Science & Technology 47(8): 1563-1578.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Yohanna Alegre Martine*, Arancha De-La-Fuente, Maria Pilar Saenz-Navaja, Purificación Hernández-Orte, Vicente Ferreira

*University of Zaragoza

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.