Macrowine 2021
IVES 9 IVES Conference Series 9 Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

Abstract

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel (Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002). Seven Verdejo and five Tempranillo samples were classified in the highest quality category, presenting different aroma profiles such as citrus, fruit in syrup, boxtree/vegetal, tropical or wet grain aromas for Verdejo and red fruit or fruit in syrup for Tempranillo. β-damascenone, 3-mercaptohexyl acetate and ethyl butyrate appeared as distinctive quality compounds linked to dried, tropical and red fruit aromas, respectively. Categorization task followed by flash profiling and GC-O analysis has revealed to be a rapid and effective sensory-directed methodology for the screening of distinctive and quality wine aroma profiles in a case study of yeast selection. Wine industry could benefit from the use of this methodology as a complementary tool for optimizing technical processes along elaboration.

López, R., M. Aznar, et al. (2002). “Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection.” Journal of Chromatography A 966(1–2): 167-177. Sáenz-Navajas, M.-P., J. Ballester, et al. (2013). “Sensory drivers of intrinsic quality of red wines: Effect of culture and level of expertise.” Food Research International 54(2): 1506-1518. Valentin, D., S. Chollet, et al. (2012). “Quick and dirty but still pretty good: a review of new descriptive methods in food science.” International Journal of Food Science & Technology 47(8): 1563-1578.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Yohanna Alegre Martine*, Arancha De-La-Fuente, Maria Pilar Saenz-Navaja, Purificación Hernández-Orte, Vicente Ferreira

*University of Zaragoza

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.