Macrowine 2021
IVES 9 IVES Conference Series 9 Identification of caffeic acid as a major component of Moscatel wine protein sediment

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Abstract

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation. The objective of this study was to isolate and identify the compounds contained in induced wine protein haze precipitate after alkaline hydrolysis. The heat-induced protein precipitate from five liters of white Moscatel of Alexandria wine was subjected to alkaline hydrolysis in 2 M NaOH, 10 mM EDTA and 1% (w/v) L-ascorbic acid following a protocol described elsewhere [5] with some modifications. The alkaline hydrolyzed sample was subjected to liquid-liquid extraction with ethyl acetate and evaporated to dryness. The extract was further fractionated using reversed phase-high performance liquid chromatography-diode array detector (RP-HPLC-DAD). The major compound present was found to be caffeic acid amongst other minor, unidentified compounds. Caffeic acid was identified by UV-vis spectra and the structure validated by 1H nuclear magnetic resonance (NMR). This work corroborates the observation that phenolic compounds, and caffeic acid in particular, may participate in wine protein haze formation since it is the major compound nonprotein compound present in Moscatel wine protein sediment.

References: [1] F.X. Sauvage, B. Bach, M. Moutounet, and A. Vernhet, Food Chemistry, 2010, 118, 26-34. [2] E.J. Waters, W. Wallace, and P.J. Williams, Journal of Agricultural and Food Chemistry, 1992, 40, 1514-1519. [3] G. Tabilo-Munizaga, T.A. Gordon, R. Villalobos-Carvajal, L. Moreno-Osorio, F.N. Salazar, M. Perez-Won, and S. Acuna, Food Chemistry , 2014, 155, 214-220. [4] M. Esteruelas, N. Kontoudakis, M. Gil, M.F. Fort, J.M. Canals, and F. Zamora, Food Research International, 2011, 44, 77-83. [5] Nardini, M., E. Cirillo, F. Natella, and C. Scaccini, Journal of Agricultural and Food Chemistry, 2002, 50, 5735-5741.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ricardo Chagas*, Ana Lourenço, Luísa Carvalho, Ricardo Ferreira, Sara Monteiro

*FCT/UNL

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.