Macrowine 2021
IVES 9 IVES Conference Series 9 Identification of caffeic acid as a major component of Moscatel wine protein sediment

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Abstract

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation. The objective of this study was to isolate and identify the compounds contained in induced wine protein haze precipitate after alkaline hydrolysis. The heat-induced protein precipitate from five liters of white Moscatel of Alexandria wine was subjected to alkaline hydrolysis in 2 M NaOH, 10 mM EDTA and 1% (w/v) L-ascorbic acid following a protocol described elsewhere [5] with some modifications. The alkaline hydrolyzed sample was subjected to liquid-liquid extraction with ethyl acetate and evaporated to dryness. The extract was further fractionated using reversed phase-high performance liquid chromatography-diode array detector (RP-HPLC-DAD). The major compound present was found to be caffeic acid amongst other minor, unidentified compounds. Caffeic acid was identified by UV-vis spectra and the structure validated by 1H nuclear magnetic resonance (NMR). This work corroborates the observation that phenolic compounds, and caffeic acid in particular, may participate in wine protein haze formation since it is the major compound nonprotein compound present in Moscatel wine protein sediment.

References: [1] F.X. Sauvage, B. Bach, M. Moutounet, and A. Vernhet, Food Chemistry, 2010, 118, 26-34. [2] E.J. Waters, W. Wallace, and P.J. Williams, Journal of Agricultural and Food Chemistry, 1992, 40, 1514-1519. [3] G. Tabilo-Munizaga, T.A. Gordon, R. Villalobos-Carvajal, L. Moreno-Osorio, F.N. Salazar, M. Perez-Won, and S. Acuna, Food Chemistry , 2014, 155, 214-220. [4] M. Esteruelas, N. Kontoudakis, M. Gil, M.F. Fort, J.M. Canals, and F. Zamora, Food Research International, 2011, 44, 77-83. [5] Nardini, M., E. Cirillo, F. Natella, and C. Scaccini, Journal of Agricultural and Food Chemistry, 2002, 50, 5735-5741.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ricardo Chagas*, Ana Lourenço, Luísa Carvalho, Ricardo Ferreira, Sara Monteiro

*FCT/UNL

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Influence of toasting oak wood on ellagitannin structures

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition.