Macrowine 2021
IVES 9 IVES Conference Series 9 Identification of caffeic acid as a major component of Moscatel wine protein sediment

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Abstract

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation. The objective of this study was to isolate and identify the compounds contained in induced wine protein haze precipitate after alkaline hydrolysis. The heat-induced protein precipitate from five liters of white Moscatel of Alexandria wine was subjected to alkaline hydrolysis in 2 M NaOH, 10 mM EDTA and 1% (w/v) L-ascorbic acid following a protocol described elsewhere [5] with some modifications. The alkaline hydrolyzed sample was subjected to liquid-liquid extraction with ethyl acetate and evaporated to dryness. The extract was further fractionated using reversed phase-high performance liquid chromatography-diode array detector (RP-HPLC-DAD). The major compound present was found to be caffeic acid amongst other minor, unidentified compounds. Caffeic acid was identified by UV-vis spectra and the structure validated by 1H nuclear magnetic resonance (NMR). This work corroborates the observation that phenolic compounds, and caffeic acid in particular, may participate in wine protein haze formation since it is the major compound nonprotein compound present in Moscatel wine protein sediment.

References: [1] F.X. Sauvage, B. Bach, M. Moutounet, and A. Vernhet, Food Chemistry, 2010, 118, 26-34. [2] E.J. Waters, W. Wallace, and P.J. Williams, Journal of Agricultural and Food Chemistry, 1992, 40, 1514-1519. [3] G. Tabilo-Munizaga, T.A. Gordon, R. Villalobos-Carvajal, L. Moreno-Osorio, F.N. Salazar, M. Perez-Won, and S. Acuna, Food Chemistry , 2014, 155, 214-220. [4] M. Esteruelas, N. Kontoudakis, M. Gil, M.F. Fort, J.M. Canals, and F. Zamora, Food Research International, 2011, 44, 77-83. [5] Nardini, M., E. Cirillo, F. Natella, and C. Scaccini, Journal of Agricultural and Food Chemistry, 2002, 50, 5735-5741.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ricardo Chagas*, Ana Lourenço, Luísa Carvalho, Ricardo Ferreira, Sara Monteiro

*FCT/UNL

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).