Macrowine 2021
IVES 9 IVES Conference Series 9 Identification of caffeic acid as a major component of Moscatel wine protein sediment

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Abstract

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation. The objective of this study was to isolate and identify the compounds contained in induced wine protein haze precipitate after alkaline hydrolysis. The heat-induced protein precipitate from five liters of white Moscatel of Alexandria wine was subjected to alkaline hydrolysis in 2 M NaOH, 10 mM EDTA and 1% (w/v) L-ascorbic acid following a protocol described elsewhere [5] with some modifications. The alkaline hydrolyzed sample was subjected to liquid-liquid extraction with ethyl acetate and evaporated to dryness. The extract was further fractionated using reversed phase-high performance liquid chromatography-diode array detector (RP-HPLC-DAD). The major compound present was found to be caffeic acid amongst other minor, unidentified compounds. Caffeic acid was identified by UV-vis spectra and the structure validated by 1H nuclear magnetic resonance (NMR). This work corroborates the observation that phenolic compounds, and caffeic acid in particular, may participate in wine protein haze formation since it is the major compound nonprotein compound present in Moscatel wine protein sediment.

References: [1] F.X. Sauvage, B. Bach, M. Moutounet, and A. Vernhet, Food Chemistry, 2010, 118, 26-34. [2] E.J. Waters, W. Wallace, and P.J. Williams, Journal of Agricultural and Food Chemistry, 1992, 40, 1514-1519. [3] G. Tabilo-Munizaga, T.A. Gordon, R. Villalobos-Carvajal, L. Moreno-Osorio, F.N. Salazar, M. Perez-Won, and S. Acuna, Food Chemistry , 2014, 155, 214-220. [4] M. Esteruelas, N. Kontoudakis, M. Gil, M.F. Fort, J.M. Canals, and F. Zamora, Food Research International, 2011, 44, 77-83. [5] Nardini, M., E. Cirillo, F. Natella, and C. Scaccini, Journal of Agricultural and Food Chemistry, 2002, 50, 5735-5741.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ricardo Chagas*, Ana Lourenço, Luísa Carvalho, Ricardo Ferreira, Sara Monteiro

*FCT/UNL

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.