Macrowine 2021
IVES 9 IVES Conference Series 9 Identification of caffeic acid as a major component of Moscatel wine protein sediment

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Abstract

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation. The objective of this study was to isolate and identify the compounds contained in induced wine protein haze precipitate after alkaline hydrolysis. The heat-induced protein precipitate from five liters of white Moscatel of Alexandria wine was subjected to alkaline hydrolysis in 2 M NaOH, 10 mM EDTA and 1% (w/v) L-ascorbic acid following a protocol described elsewhere [5] with some modifications. The alkaline hydrolyzed sample was subjected to liquid-liquid extraction with ethyl acetate and evaporated to dryness. The extract was further fractionated using reversed phase-high performance liquid chromatography-diode array detector (RP-HPLC-DAD). The major compound present was found to be caffeic acid amongst other minor, unidentified compounds. Caffeic acid was identified by UV-vis spectra and the structure validated by 1H nuclear magnetic resonance (NMR). This work corroborates the observation that phenolic compounds, and caffeic acid in particular, may participate in wine protein haze formation since it is the major compound nonprotein compound present in Moscatel wine protein sediment.

References: [1] F.X. Sauvage, B. Bach, M. Moutounet, and A. Vernhet, Food Chemistry, 2010, 118, 26-34. [2] E.J. Waters, W. Wallace, and P.J. Williams, Journal of Agricultural and Food Chemistry, 1992, 40, 1514-1519. [3] G. Tabilo-Munizaga, T.A. Gordon, R. Villalobos-Carvajal, L. Moreno-Osorio, F.N. Salazar, M. Perez-Won, and S. Acuna, Food Chemistry , 2014, 155, 214-220. [4] M. Esteruelas, N. Kontoudakis, M. Gil, M.F. Fort, J.M. Canals, and F. Zamora, Food Research International, 2011, 44, 77-83. [5] Nardini, M., E. Cirillo, F. Natella, and C. Scaccini, Journal of Agricultural and Food Chemistry, 2002, 50, 5735-5741.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ricardo Chagas*, Ana Lourenço, Luísa Carvalho, Ricardo Ferreira, Sara Monteiro

*FCT/UNL

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.