terclim by ICS banner
IVES 9 IVES Conference Series 9 Molecular characterization of a variegated grapevine mutant cv Bruce’s Sport

Molecular characterization of a variegated grapevine mutant cv Bruce’s Sport

Abstract

Variegation, a frequently observed trait in plants, is characterized by the occurrence of white or discoloured plant tissue. This phenomenon is attributed to genetic mosaicism or chimerism, potentially impacting the epidermal (L1) and subepidermal (L2) cell layers. In grapevine, variegation manifests as white or paler leaf, flower, or berry tissues, often leading to stunted growth and impeded development. Despite its prevalence, variegation in grapevines remains understudied. Notably, a natural mutant derived from Sultana, namely Bruce’s Sport, exhibits colour variegation in the leaves, although this occurrence only appears later in the growing season. Conversely, the flowers and berries are always variegated and are paler in colour. Furthermore, studies have observed that Bruce’s Sport displays a lower berry yield compared to the Sultana variety, along with reduced polyphenol oxidase (PPO) activity in the variegated tissues. This study aims to investigate the genetic basis of variegation in Bruce’s Sport and its effects on plant growth and development. To this extent, a transcriptomic analysis was employed comparing data obtained from flower tissue of Sultana and Bruce’s Sport. Additionally, differentially expressed genes were confirmed, aiding in the identification and characterization of genes associated with variegation in the Vitis genome, potentially uncovering candidates for future functional studies.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Clara Holm1*, Nina Wiese1, Manuela Campa1, Johan Burger1, Justin Lashbrooke1

1 Genetics Department, Stellenbosch University, South Africa

Contact the author*

Keywords

variegation, grapevine, polyphenol oxidase activity, gene expression

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Which heat test really represents the haze risk of a white Sauvignon wine ?

AIM: Different heat tests are used to predict a white wine haze risk after bottling. The most used tests are 30-60 min. at 80°C. Nevertheless, there is a lack of information about the relationship between the wine haze observed after such tests and the turbidities observed in the bottles after the storage/transport of the wines in more realistic Summer conditions (35-46°C during 3-12 days)

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Sensory profiles and European Consumer Preference related to Aroma and Phenolic Composition of Wines made from Fungus Resistant Grape Varieties

New grape varieties with several resistance loci towards powdery and downy mildew allows to significantly reduce the use of fungicides

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.