terclim by ICS banner
IVES 9 IVES Conference Series 9 Molecular characterization of a variegated grapevine mutant cv Bruce’s Sport

Molecular characterization of a variegated grapevine mutant cv Bruce’s Sport

Abstract

Variegation, a frequently observed trait in plants, is characterized by the occurrence of white or discoloured plant tissue. This phenomenon is attributed to genetic mosaicism or chimerism, potentially impacting the epidermal (L1) and subepidermal (L2) cell layers. In grapevine, variegation manifests as white or paler leaf, flower, or berry tissues, often leading to stunted growth and impeded development. Despite its prevalence, variegation in grapevines remains understudied. Notably, a natural mutant derived from Sultana, namely Bruce’s Sport, exhibits colour variegation in the leaves, although this occurrence only appears later in the growing season. Conversely, the flowers and berries are always variegated and are paler in colour. Furthermore, studies have observed that Bruce’s Sport displays a lower berry yield compared to the Sultana variety, along with reduced polyphenol oxidase (PPO) activity in the variegated tissues. This study aims to investigate the genetic basis of variegation in Bruce’s Sport and its effects on plant growth and development. To this extent, a transcriptomic analysis was employed comparing data obtained from flower tissue of Sultana and Bruce’s Sport. Additionally, differentially expressed genes were confirmed, aiding in the identification and characterization of genes associated with variegation in the Vitis genome, potentially uncovering candidates for future functional studies.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Clara Holm1*, Nina Wiese1, Manuela Campa1, Johan Burger1, Justin Lashbrooke1

1 Genetics Department, Stellenbosch University, South Africa

Contact the author*

Keywords

variegation, grapevine, polyphenol oxidase activity, gene expression

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a Southwestern France vineyard

The soil plays a pivotal role in the agroecological transition processes, due to its numerous implications in production support, water regulation, air and nutrient supply, and its function of reservoir for the major part of planet biodiversity. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it gathered winegrowers from the south-west of France (Gascony), scientists, advisors and technicians, around a project focused on the biological functioning of viticultural soil and the design of better-adapted technical paths for soil protection.

Enhancing the color traits of ‘Nebbiolo’ and ‘Dolcetto’ grapes: the role of abscisic acid during ripening

The red Italian variety Nebbiolo (Vitis vinifera L.), used in the production of the prestigious Barolo and Barbaresco wines, is renowned for its aromatic and structural complexity but also for its low color intensity.

DNA-free genome editing confers disease resistance in grapevine varieties

The grapevine is facing significant challenges due to climate change, as rising temperatures impact its physiological traits and disrupt plant phenology.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

Kinetic investigations of the Gewürztraminer volatile organic compounds and color at different temperatures and pHs

Gewürztraminer is a well-known wine famous for its aroma profile, which is characterized by rose petals, cloves, lychees, and other tropical fruit notes.