terclim by ICS banner
IVES 9 IVES Conference Series 9 Molecular characterization of a variegated grapevine mutant cv Bruce’s Sport

Molecular characterization of a variegated grapevine mutant cv Bruce’s Sport

Abstract

Variegation, a frequently observed trait in plants, is characterized by the occurrence of white or discoloured plant tissue. This phenomenon is attributed to genetic mosaicism or chimerism, potentially impacting the epidermal (L1) and subepidermal (L2) cell layers. In grapevine, variegation manifests as white or paler leaf, flower, or berry tissues, often leading to stunted growth and impeded development. Despite its prevalence, variegation in grapevines remains understudied. Notably, a natural mutant derived from Sultana, namely Bruce’s Sport, exhibits colour variegation in the leaves, although this occurrence only appears later in the growing season. Conversely, the flowers and berries are always variegated and are paler in colour. Furthermore, studies have observed that Bruce’s Sport displays a lower berry yield compared to the Sultana variety, along with reduced polyphenol oxidase (PPO) activity in the variegated tissues. This study aims to investigate the genetic basis of variegation in Bruce’s Sport and its effects on plant growth and development. To this extent, a transcriptomic analysis was employed comparing data obtained from flower tissue of Sultana and Bruce’s Sport. Additionally, differentially expressed genes were confirmed, aiding in the identification and characterization of genes associated with variegation in the Vitis genome, potentially uncovering candidates for future functional studies.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Clara Holm1*, Nina Wiese1, Manuela Campa1, Johan Burger1, Justin Lashbrooke1

1 Genetics Department, Stellenbosch University, South Africa

Contact the author*

Keywords

variegation, grapevine, polyphenol oxidase activity, gene expression

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impact of innovative canopy management techniques on grape and wine quality under Mediterranean summer conditions

The recent effects on temperature and rainfall caused by global warming pose a serious threat to the wine industry worldwide, mainly in terms of a loss of quality in the wines produced.

Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Vinification by carbonic maceration (CM) is based in the anaerobic fermentative metabolism also called intracellular fermentation (IF).

Hyperspectral imaging for the appraisal of varietal aroma composition along maturation in intact Vitis vinifera L. Tempranillo Blanco berries

The knowledge of the grape aromatic composition during ripening provides very important information for winegrowers, who may carry out different viticultural practices, or determine the harvest date more accurately. However, there are currently no tools that allow this measurement to be carried out in a non-invasive and rapid way. For this reason, the aim of this work was to design a non-invasive methodology, based on hyperspectral imaging to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening.

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

What triggers the decision to ripen 

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening.