terclim by ICS banner
IVES 9 IVES Conference Series 9 Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

Abstract

A major goal of modern grapevine (Vitis vinifera L.) breeding programs is the introgression of resistance genes along with desirable traits for better adaptation to climate change. Developmental stages have an impact on yield components and berry composition and are expected to shift towards earlier dates in the future. We investigated the genetic determinism of phenological stages in the progeny of a cross between two grapevine hybrids, each carrying several quantitative trait loci (QTL) for downy mildew and powdery mildew resistance. The dates of three phenological stages, budbreak, flowering and veraison, were recorded during three consecutive seasons for 209 genotypes in the vineyard. The phenotypic data analysed were the duration of three periods expressed in thermal time (degree-days): 15 February to budbreak, budbreak to flowering and flowering to veraison. High density parental and consensus genetic maps were constructed and used for QTL detection. Several QTL were detected for each period and the corresponding allelic effects were quantified and expressed in degree.days. Two virtual early and late genotypes were created by combining the relevant alleles. Using a previously validated ecophysiological model with simulated climate data for the RCP8.5 IPCC scenario, budbreak, flowering and veraison dates were predicted for the parents, Chardonnay, and the two virtual genotypes for each year up to 2100. Mean temperatures during the ripening period were calculated. The interest of the virtual genotypes in compensating for the expected shift in veraison dates will be discussed.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Elsa Chedid1, Vincent  Dumas1, Didier Merdinoglu1, Éric Duchêne1*

1 Affliliation SVQV, Université de Strasbourg, INRAE, Colmar, France

Contact the author*

Keywords

Grapevine, climate change, phenology, QTL, plant breeding

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Proposition of a simplified approach of the viticultural landscape

Une approche très simple de la lecture des paysages est proposée sur la base de l’expérience acquise par l’observation de divers terroirs du monde.

Aroma compounds and physical-chemical characterization of grapes and wines from Mount Etna “relic-jewels” vine genotypes

In the last few decades, minor vine genotypes traditionally cultivated on the Mount Etna slopes, have attracted the interest of both researchers and vine growers, as they offer an interesting oenological profile.

Characterising the chemical typicality of regional Cabernet Sauvignon wines

Aim: To define the uniqueness of Australian Cabernet Sauvignon wines by evaluation of the chemical composition (volatile aroma and non-volatile constituents) that may drive regional typicity, and to correlate this with comprehensive sensory analysis data to identify the most important compounds driving relevant sensory attributes.

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.

Activation of retrotransposition in grapevine

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci.