terclim by ICS banner
IVES 9 IVES Conference Series 9 Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

Abstract

A major goal of modern grapevine (Vitis vinifera L.) breeding programs is the introgression of resistance genes along with desirable traits for better adaptation to climate change. Developmental stages have an impact on yield components and berry composition and are expected to shift towards earlier dates in the future. We investigated the genetic determinism of phenological stages in the progeny of a cross between two grapevine hybrids, each carrying several quantitative trait loci (QTL) for downy mildew and powdery mildew resistance. The dates of three phenological stages, budbreak, flowering and veraison, were recorded during three consecutive seasons for 209 genotypes in the vineyard. The phenotypic data analysed were the duration of three periods expressed in thermal time (degree-days): 15 February to budbreak, budbreak to flowering and flowering to veraison. High density parental and consensus genetic maps were constructed and used for QTL detection. Several QTL were detected for each period and the corresponding allelic effects were quantified and expressed in degree.days. Two virtual early and late genotypes were created by combining the relevant alleles. Using a previously validated ecophysiological model with simulated climate data for the RCP8.5 IPCC scenario, budbreak, flowering and veraison dates were predicted for the parents, Chardonnay, and the two virtual genotypes for each year up to 2100. Mean temperatures during the ripening period were calculated. The interest of the virtual genotypes in compensating for the expected shift in veraison dates will be discussed.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Elsa Chedid1, Vincent  Dumas1, Didier Merdinoglu1, Éric Duchêne1*

1 Affliliation SVQV, Université de Strasbourg, INRAE, Colmar, France

Contact the author*

Keywords

Grapevine, climate change, phenology, QTL, plant breeding

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Système de Classification Climatique Multicritères (CCM) Géoviticole

Le travail concerne en premier la méthodologie de caractérisation du climat des vignobles, à l’échelle du macroclimat des régions viticoles du monde (géoviticulture). Trois indices climatiques viticoles synthétiques

Aromatic maturity is a cornerstone of terroir expression in red wine

Harvesting grapes at adequate maturity is key to the production of high-quality red wines. Enologists and wine makers define several types of maturity, including technical maturity, phenolic maturity and aromatic maturity. Technical maturity and phenolic maturity are relatively well documented in the scientific literature, while articles on aromatic maturity are scarcer. This is surprising, because aromatic maturity is, without a doubt, the most important of the three in determining wine quality and typicity (including terroir expression). Optimal terroir expression can be obtained when the different types of maturity are reached at the same time, or within a short time frame. This is more likely to occur when the ripening takes place under mild temperatures, neither too cool, nor too hot. Aromatic expression in wine can be driven, from low to high maturity, by green, herbal, fresh fruit, ripe fruit, jammy fruit, candied fruit or cooked fruit aromas. Green and cooked fruit aromas are not desirable in red wines, while the levels of other aromatic compounds contribute to the typicity of the wine in relation to its origin. Wines produced in cool climates, or on cool soils in temperate climates, are likely to express herbal or fresh fruit aromas; while wines produced under warm climates, or on warm soils in temperate climates, may express ripe fruit, jammy fruit or candied fruit aromas. Growers can optimize terroir expression through their choice of grapevine variety. Early ripening varieties perform better in cool climates and late ripening varieties in warm climates. Additionally, maturity can be advanced or delayed by different canopy management practices or training systems.

Caractérisation et valorisation des terroirs de l’appellation d’origine contrôlée Puisseguin-Saint-Emilion

Le terroir viticole, qui est la base de la délimitation des aires d’Appellation d’Origine Contrôlée, est une notion complexe dans laquelle sont en interaction la vigne, les facteurs naturels tels que le sol, le climat, ainsi que le facteur humain à travers les pratiques des viticulteurs. Le terroir conditionne la composition des raisins et ainsi la qualité et la typicité des vins qui en sont issus.

The wine country, between landscape and promoting tool. The example of Chinon and Saint-Nicolas-de-Bourgueil vineyards (France)

When talking about wine, terroirs are never too far. The National Institute of Apellation d’Origine (INAO) defines it as a system inside of which interact a group of human factors, an agricultural production and a physical environment.

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes