terclim by ICS banner
IVES 9 IVES Conference Series 9 Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Abstract

Three-dimensional functional-structural root architecture models, which decompose the root system architecture (RSA) into elementary developmental processes such as root emission, axial growth, branching patterns and tropism have become useful tools for (i) reconstructing in silico the spatial and temporal dynamics of root systems in a soil volume, (ii) analyzing their genotypic diversity and plasticity to the environment, and (iii) overcoming the bottleneck associated with their visualization and measurement in situ. Here, we present an original work on RSA phenotyping and modelling in grapevine. First, we developed 2D image-based analysis pipelines to quantify morphological and architectural traits in young grafts. Second, we parametrized and validated the 3D root model Archisimple on two rootstock genotypes (RGM, 1103P) grafted with V. vinifera Cabernet-Sauvignon and grown in different controlled conditions (rhizotrons, pots, tubes). Finally, we experimentally studied the sensitivity of RSA to initial carbon availability using hardwood cuttings of different lengths (8, 20, 30 and 50 cm). Results showed that the number of adventitious roots and their emergence rate were affected by changes in cutting length, whereas RSA traits related to elongation and branching remained relatively stable. Simulated root systems differed between rootstocks, with RGM having more shallow roots and less deep root length density than 1103P. This study highlighted how a modelling approach provides a deeper understanding of the genetic, environmental, and endogenous factors that determine rooting ability and early development of RSA. This knowledge can be applied in nurseries, for example, to improve the successful establishment of grafted vines after planting.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Mathieu Larrey1*, Jean-Pascal Tandonnet1, Clément Saint Cast1, Philippe Vivin1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

root system architecture, functional-structural root architecture model, root phenotyping, rootstock

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Physiological response to drought and heat stress in the leaves of table grape varieties

Increasingly pronounced climate changes, including prolonged drought periods, pose a significant challenge to the cultivation of table grape varieties.

Use of ultrasounds to accelerate aging on lees of red wines

Aging on lees (AOL) is a powerful technique to protect varietal aroma and color. Simultaneously, helps to soften tannins and increase and improve wine body and structure. AOL is complementary to barrel aging modulating the wood impact and protecting wine from oxidative conditions.

The FEM grapevine breeding program: new registered varieties (mid-)resistant to the main ampelopathies

“Vinum debet esse naturale ex genimine vitis et non corruptum”. The Eucharistic wine must be made with pure grapes that must not be contaminated in any way. This is how wine was born in the monastery of the Augustinians, and that is how the genetic improvement of grapevine implemented over the decades at the Agricultural Institute of San Michele all’Adige (since 1874; Trentino – Italy) has been oriented to make the cultivation of grapes always more sustainable. This concept is still current and meets the worldwide urgent need of reducing the use of chemicals, under a climate crisis scenario. Since the beginning of the twentieth century, the varieties introduced in Trentino and the new cultivars produced by pioneer breeders have already embraced the principle of sustainable viticulture.