terclim by ICS banner
IVES 9 IVES Conference Series 9 Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Abstract

Three-dimensional functional-structural root architecture models, which decompose the root system architecture (RSA) into elementary developmental processes such as root emission, axial growth, branching patterns and tropism have become useful tools for (i) reconstructing in silico the spatial and temporal dynamics of root systems in a soil volume, (ii) analyzing their genotypic diversity and plasticity to the environment, and (iii) overcoming the bottleneck associated with their visualization and measurement in situ. Here, we present an original work on RSA phenotyping and modelling in grapevine. First, we developed 2D image-based analysis pipelines to quantify morphological and architectural traits in young grafts. Second, we parametrized and validated the 3D root model Archisimple on two rootstock genotypes (RGM, 1103P) grafted with V. vinifera Cabernet-Sauvignon and grown in different controlled conditions (rhizotrons, pots, tubes). Finally, we experimentally studied the sensitivity of RSA to initial carbon availability using hardwood cuttings of different lengths (8, 20, 30 and 50 cm). Results showed that the number of adventitious roots and their emergence rate were affected by changes in cutting length, whereas RSA traits related to elongation and branching remained relatively stable. Simulated root systems differed between rootstocks, with RGM having more shallow roots and less deep root length density than 1103P. This study highlighted how a modelling approach provides a deeper understanding of the genetic, environmental, and endogenous factors that determine rooting ability and early development of RSA. This knowledge can be applied in nurseries, for example, to improve the successful establishment of grafted vines after planting.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Mathieu Larrey1*, Jean-Pascal Tandonnet1, Clément Saint Cast1, Philippe Vivin1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

root system architecture, functional-structural root architecture model, root phenotyping, rootstock

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Assessment of environmental sustainability of wine growing activity in France

To meet the demand of assessment tool of vine growers and their advisers we adapted to the vine production the INDIGO® method to developed initially for arable farming.

Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines

AIM Aiming to explore the possibility of shortening red winemaking maceration times (1,2), this study presents the effect of the application of high-power ultrasounds to crushed grapes, at winery-scale, on the content of varietal volatile compounds (free and glycosidically-bound) in musts and on the overall aroma of wines.

Can grapevine intra-varietal genetic variability be a tool for climate change adaptation? A case study at a hot and dry environment

Climate change projections point to an increase of temperatures and changes in rainfall patterns in the mediterranean region.

An effective method for extracting high-quality RNA from grapevine

Grapevine (Vitis vinifera L.) is one of the most important economic crops in the world. Because of this importance, one finds widespread molecular genetic research on this species, an important element of which is high quality RNA.