terclim by ICS banner
IVES 9 IVES Conference Series 9 Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Abstract

Three-dimensional functional-structural root architecture models, which decompose the root system architecture (RSA) into elementary developmental processes such as root emission, axial growth, branching patterns and tropism have become useful tools for (i) reconstructing in silico the spatial and temporal dynamics of root systems in a soil volume, (ii) analyzing their genotypic diversity and plasticity to the environment, and (iii) overcoming the bottleneck associated with their visualization and measurement in situ. Here, we present an original work on RSA phenotyping and modelling in grapevine. First, we developed 2D image-based analysis pipelines to quantify morphological and architectural traits in young grafts. Second, we parametrized and validated the 3D root model Archisimple on two rootstock genotypes (RGM, 1103P) grafted with V. vinifera Cabernet-Sauvignon and grown in different controlled conditions (rhizotrons, pots, tubes). Finally, we experimentally studied the sensitivity of RSA to initial carbon availability using hardwood cuttings of different lengths (8, 20, 30 and 50 cm). Results showed that the number of adventitious roots and their emergence rate were affected by changes in cutting length, whereas RSA traits related to elongation and branching remained relatively stable. Simulated root systems differed between rootstocks, with RGM having more shallow roots and less deep root length density than 1103P. This study highlighted how a modelling approach provides a deeper understanding of the genetic, environmental, and endogenous factors that determine rooting ability and early development of RSA. This knowledge can be applied in nurseries, for example, to improve the successful establishment of grafted vines after planting.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Mathieu Larrey1*, Jean-Pascal Tandonnet1, Clément Saint Cast1, Philippe Vivin1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

root system architecture, functional-structural root architecture model, root phenotyping, rootstock

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,

Grafting, the most sustainable way to control phylloxera over 150 years

Just over 150 years ago, phylloxera, daktulosphaera vitifoliae, was introduced to europe, and particularly france, from north america via imports of american vitis plants. This aphid, with its complex biology and life cycle, has spread rapidly to most vineyards, causing rapid and lethal decline of v. Vinifera vines due to the primary and secondary damage it causes to the roots. In response to this pest, and given the economic importance of the french wine sector, professional representatives organised into ‘agricultural societies’, scientists and public authorities rallied together to identify the exact causes, seek solutions and try to stem the serious socio-economic crisis that ensued.

Exploring induced mutagenesis as a tool for grapevine intra-varietal improvement: increased diversity in ripening periods and bunch traits with climate resilience potential

The wine industry currently relies on a limited number of grapevine cultivars, comprised of numerous clones with slight differences in their viticultural, oenological, or stress-tolerance traits.

Dissecting the dual role of light regarding the plasticity of grape physiology and gene regulation through daylength simulation in a semi-arid region

Context and purpose of the study. Daylength is a key climatic factor within the terroir concept. However, the complex interplay of multiple variables in regions with varying daylengths makes it challenging to isolate and investigate this specific factor.

Highlighting a link between the structure of mannoproteins and their foaming properties in sparkling wines

Effervescence and foaming properties are the main visual characteristics assessed by the consumer during
sparkling wine tasting.