terclim by ICS banner
IVES 9 IVES Conference Series 9 Yield formation and grape composition: more than meets the eye 

Yield formation and grape composition: more than meets the eye 

Abstract

Fruit quality in grapes is not well defined but is often depicted as correlating inversely with crop yield. Both fruit yield and composition, however, are made from distinct components that interact in complex ways. Reproductive growth of grapevines extends over two growing seasons. Inflorescences initiated in buds during the previous year differentiate flowers and set and develop berries during the harvest year. Compensation mechanisms ensure that changing one yield component typically results in a less than proportional change in yield. For example, reducing the number of berries per vine may increase berry size. Nevertheless, warm temperatures and ample water during budbreak or bloom will increase both the number and size of berries, and increase or decrease berry sugar while decreasing acidity. Moreover, the time of fruit set and the number of seeds, rather than yield, may drive the time of ripening onset. By that time, berry size is effectively predetermined and can no longer be manipulated by cultural practices. Ripening starts with berry softening and is followed by sugar accumulation, acid breakdown and, finally, anthocyanin accumulation in dark-skinned grapes. Like yield components, these processes can be modified by altering the size and density of the canopy, which changes the fruit-zone microclimate. Unlike vegetative and reproductive growth, fruit composition is much more responsive to temperature than to water supply. This presentation will give an overview of yield formation and grape ripening, and discuss some key environmental and viticultural factors that lead to differences in harvest yield and fruit composition.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Markus Keller1*
1 Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350, USA

Contact the author*

Keywords

grapevine, yield components, water stress, temperature, Vitis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available.

Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Today’s viticulture faces a considerable challenge dealing with fungal diseases and limitations on the use of plant protection products (PPP) have increased the pressure to find more sustainable alternatives. One strategy may be the development and cultivation of disease-resistant grapevine varieties (PIWI) that could maintain crop productivity and quality while reducing dependence on PPP. In this work a set of 9 PIWI varieties (5 white and 4 red) deploying genes for resistance to powdery and downy mildew were evaluated in two consecutive years in Valdegón, La Rioja, with Tempranillo and Viura as controls. The objective was to correlate agronomic performance and disease incidence with the presence of disease resistance genes in two different seasons: with (2023) and without disease pressure (2022).

Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites.

Generation and characterization of a training population in Vitis vinifera for enhanced genomic selection

Context and purpose of the study. Modern viticulture is facing significant challenges due to global climate changes, spanning from extreme heat spells and water scarcity to the acceleration of grapevine’s phenological development with important consequences from budbreak to harvest.

How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

Viticulture and grapevine breeding programs have to face and adapt to the rapidly changing growing conditions due to the ongoing climate change, the scarcity of resources and the demand for sustainability within the whole value chain of wine production. In times of highly effective and cost-efficient genotyping technologies routinely applied in plant research and breeding, the need for comparable high-speed and high-resolution phenotyping tools has increased substantially. The disciplines of grapevine research, breeding and precision viticulture picked up this demand – mostly independent from each other – by the development, validation and establishment of different sensor technologies in order to extend management strategies or to transform labor-intensive and expensive phenotyping.