terclim by ICS banner
IVES 9 IVES Conference Series 9 Yield formation and grape composition: more than meets the eye 

Yield formation and grape composition: more than meets the eye 

Abstract

Fruit quality in grapes is not well defined but is often depicted as correlating inversely with crop yield. Both fruit yield and composition, however, are made from distinct components that interact in complex ways. Reproductive growth of grapevines extends over two growing seasons. Inflorescences initiated in buds during the previous year differentiate flowers and set and develop berries during the harvest year. Compensation mechanisms ensure that changing one yield component typically results in a less than proportional change in yield. For example, reducing the number of berries per vine may increase berry size. Nevertheless, warm temperatures and ample water during budbreak or bloom will increase both the number and size of berries, and increase or decrease berry sugar while decreasing acidity. Moreover, the time of fruit set and the number of seeds, rather than yield, may drive the time of ripening onset. By that time, berry size is effectively predetermined and can no longer be manipulated by cultural practices. Ripening starts with berry softening and is followed by sugar accumulation, acid breakdown and, finally, anthocyanin accumulation in dark-skinned grapes. Like yield components, these processes can be modified by altering the size and density of the canopy, which changes the fruit-zone microclimate. Unlike vegetative and reproductive growth, fruit composition is much more responsive to temperature than to water supply. This presentation will give an overview of yield formation and grape ripening, and discuss some key environmental and viticultural factors that lead to differences in harvest yield and fruit composition.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Markus Keller1*
1 Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350, USA

Contact the author*

Keywords

grapevine, yield components, water stress, temperature, Vitis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Soil Electrical Resistivity measurement is a zoning tool used by soil scientists and agronomists in viticulture. Indeed, the measure enables to optimize pedological surveys

Feasibility of pre-fermentative oenological tannins addition to enhance volatile composition and aroma perception in white wines

Oenological tannins (OETs) are an alternative to sulphur dioxide due to their antioxidant and antioxidase properties in the early phase of winemaking [1,2].

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L.