terclim by ICS banner
IVES 9 IVES Conference Series 9 Reduced berry skin epi-cuticular wax and cutin accumulation associates with a genomic deletion and increased polyphenols extractability in a clone of Tempranillo Tinto 

Reduced berry skin epi-cuticular wax and cutin accumulation associates with a genomic deletion and increased polyphenols extractability in a clone of Tempranillo Tinto 

Abstract

Tempranillo Tinto (TT) is the third-most planted red wine variety in the world, and it is mostly grown in the Iberian Peninsula. Spontaneous somatic variation appearing during vegetative propagation can be exploited to improve elite varieties as Tempranillo Tinto, including the selection of new phenotypes enhancing berry quality. We described previously that a somatic variant of TT with darker fruit color, the clone VN21, exhibits increased extractability of polyphenols during the winemaking process. To unravel the molecular mechanism underlying this phenomenon, we performed whole-genome resequencing to compare VN21 to other TT clones, revealing a 10 Mb deletion in chromosome 11 that likely affected only the L1 meristem cell layer of VN21 and tissues derived from it, such as external cell layers of berry skin. A putative loss-of-function allele of an ABCG32 gene (homologous to cuticle biogenesis transporters), was left hemizygous in this segment after the deletion in VN21. Scanning electron microscopy images suggested a lower content epi-cuticular wax in the berry cuticle of VN21, which likely leads to the shiny colour of VN21 berries. A GC-MS analysis of epi-cuticular waxes and cutins extracted from berry skin and leaves confirmed a general decrease in the accumulation of cuticle constituent compounds in VN21, supporting a role for the mutated ABCG32 transporter in the phenotype. Our findings show that somatic mutations altering berry cuticle biogenesis can have an effect on the extractability of polyphenols from the berry skin, which could be exploited for varietal wine innovation.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Carolina Royo1*, Yolanda Ferradás1,2, Robin Bosman 3, Fernando Alba-Elías 4, Javier Ibáñez 1, Justin Lashbrooke 3, José Miguel Martínez-Zapater 1, Pablo Carbonell-Bejerano 1

1 Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, Ctra. de Burgos Km. 6, 26007 Logroño. Spain
2 Current address: Facultad de Biología, Universidad de Santiago de Compostela, 15872 Santiago de Compostela. Spain
3 South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
4 Universidad de La Rioja, Departamento de Ingeniería Mecánica, Logroño, Spain

Contact the author*

Keywords

somatic variation, whole genome resequencing, deletion, waxes, GC-MS

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Malolactic fermentation in wine production

What influence do these bacteria have on wines? What new bacteria are being studied to carry out this fermentation? Find below articles about malolactic fermentation published in our 3 media (OENO One, IVES Technical Reviews and IVES Conference Series). OENO One...

The impact of sustainable management regimes on amino acid profiles in grape juice, grape skin flavonoids, and hydroxycinnamic acids

One of the biggest challenges of agriculture today is maintaining food safety and food quality while providing ecosystem services such as biodiversity conservation, pest and disease control, ensuring water quality and supply, and climate regulation. Organic farming was shown to promote biodiversity and carbon sequestration, and is therefore seen as one possibility of environmentally friendly production. Consumers expect organically grown crops to be free from chemical pesticides and mineral fertilizers and often presume that the quality of organically grown crops is different or higher compared to conventionally grown crops. Integrated, organic, and biodynamic viticulture were compared in a replicated field trial in Geisenheim, Germany (Vitis vinifera L. cv. Riesling). Amino acid profiles in juice, grape skin flavonoids, and hydroxycinnamic acids were monitored over three consecutive seasons beginning 7 years after conversion to organic and biodynamic viticulture, respectively. In addition, parameters such as soil nutrient status, yield, vigor, canopy temperature, and water stress were monitored to draw conclusions on reasons for the observed changes. Results revealed that the different sustainable management regimes highly differed in their amino acid profiles in juice and also in their skin flavonol content, whereas differences in the flavanol and hydroxycinnamic acid content were less pronounced. It is very likely that differences in nutrient status and yield determined amino acid profiles in juice, although all three systems showed similar amounts of mineralized nitrogen in the soil. Canopy structure and temperature in the bunch zone did not differ among treatments and therefore cannot account for the observed differences in favonols. A different light exposure of the bunches in the respective systems due to differences in vigor together with differences in berry size and a different water status of the vines might rather be responsible for the increase in flavonol content under organic and biodynamic viticulture.

Exploring the potential of Hanseniaspora vineae for quality wines production

Traditionally, non-saccharomyces yeasts were deemed undesirable in winemaking, for this reason, it is a common practice to add sulphites to prevent their proliferation during the initial stages of vinification. However, the current research on yeast diversity has unveiled numerous non-saccharomyces strains possessing advantageous traits that enrich the sensory profile of wines. The genus hanseniaspora is often associated with wine fermentation and is also commonly found on grapes.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Intraregional profiles of varietal thiols and precursors in Sauvignon Blanc juices and wines from the Adelaide Hills

Aims: To investigate the intraregional variation of varietal thiol precursors and free thiols in Sauvignon blanc grape juices and experimental wines arising from the Adelaide Hills Geographical Indication (GI) in South Australia.