terclim by ICS banner
IVES 9 IVES Conference Series 9 Reduced berry skin epi-cuticular wax and cutin accumulation associates with a genomic deletion and increased polyphenols extractability in a clone of Tempranillo Tinto 

Reduced berry skin epi-cuticular wax and cutin accumulation associates with a genomic deletion and increased polyphenols extractability in a clone of Tempranillo Tinto 

Abstract

Tempranillo Tinto (TT) is the third-most planted red wine variety in the world, and it is mostly grown in the Iberian Peninsula. Spontaneous somatic variation appearing during vegetative propagation can be exploited to improve elite varieties as Tempranillo Tinto, including the selection of new phenotypes enhancing berry quality. We described previously that a somatic variant of TT with darker fruit color, the clone VN21, exhibits increased extractability of polyphenols during the winemaking process. To unravel the molecular mechanism underlying this phenomenon, we performed whole-genome resequencing to compare VN21 to other TT clones, revealing a 10 Mb deletion in chromosome 11 that likely affected only the L1 meristem cell layer of VN21 and tissues derived from it, such as external cell layers of berry skin. A putative loss-of-function allele of an ABCG32 gene (homologous to cuticle biogenesis transporters), was left hemizygous in this segment after the deletion in VN21. Scanning electron microscopy images suggested a lower content epi-cuticular wax in the berry cuticle of VN21, which likely leads to the shiny colour of VN21 berries. A GC-MS analysis of epi-cuticular waxes and cutins extracted from berry skin and leaves confirmed a general decrease in the accumulation of cuticle constituent compounds in VN21, supporting a role for the mutated ABCG32 transporter in the phenotype. Our findings show that somatic mutations altering berry cuticle biogenesis can have an effect on the extractability of polyphenols from the berry skin, which could be exploited for varietal wine innovation.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Carolina Royo1*, Yolanda Ferradás1,2, Robin Bosman 3, Fernando Alba-Elías 4, Javier Ibáñez 1, Justin Lashbrooke 3, José Miguel Martínez-Zapater 1, Pablo Carbonell-Bejerano 1

1 Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, Ctra. de Burgos Km. 6, 26007 Logroño. Spain
2 Current address: Facultad de Biología, Universidad de Santiago de Compostela, 15872 Santiago de Compostela. Spain
3 South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
4 Universidad de La Rioja, Departamento de Ingeniería Mecánica, Logroño, Spain

Contact the author*

Keywords

somatic variation, whole genome resequencing, deletion, waxes, GC-MS

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

METAPIWI: unveiling the role of microbial communities in PIWI grapes for sustainable winemaking

The METAPIWI project advances viticulture research by examining microbial communities in PIWI (fungus-resistant) grapevines compared to traditional Vitis vinifera. It investigates how these microbes influence spontaneous fermentation and the production of distinct metabolites and aromas.

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

Distinctive flavour or taint? The case of smoky characters in wine

Forest fires in the vicinity of vineyards have significantly increased in the last decade and are a concern for grapegrowers and winemakers in many wine producing countries. The fires cause smoke drift throughout vineyards which cannot be avoided and may result in the production of wines described as ‘smoke tainted’. Such wines are characterized by undesirable sensory characters described as ‘smoky’, ‘burnt’, ‘ash’ aromas and flavours, and also may cause a lingering, unpleasant ashy aftertaste [1; 2].

Composition and molar mass distribution of different must and wine colloids

A major problem for winemakers is the formation of proteinaceous haze after bottling. Although the exact mechanisms remain unclear, this haze is formed by unfolding and agglomeration of grape proteins, being additionally influenced by numerous further factors.

Impact assessment of the reverse osmosis technique in wine alcohol management

Wine authenticity and composition can be influenced by a range of membrane separation processes as reverse osmosis. In the context of climate change, the natural trend is to obtain wines with higher alcoholic concentration when classical winemaking methods are employed, and this may induce alteration of typicity of wines by masking the olfactory and taste properties. This study aimed to evaluate the influence of reverse osmosis techniques used for decrease of ethanol content on the stable isotopic ratios as markers for wine authenticity characteristics.