terclim by ICS banner
IVES 9 IVES Conference Series 9 Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Abstract

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln). Nitrogen forms also regulate NR and NiR, influencing nitrate assimilation. The study highlights the importance of nitrogen form on leaf physiology, berry composition, and wine quality, with implications for organic fertilization and vineyard management.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Christian Zörb*

Universität Hohenheim, Institut für Kulturpflanzenwissenschaften, Qualität pflanzlicher Erzeugnisse und Weinbau (340e), Schloss Westflügel, 70593 Stuttgart Hohenheim, Germany

Contact the author*

Keywords

nitrogen application, amino acids, quality, phenolics, wine quality

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Analyse et modélisation des transferts thermiques dans un sol de vignoble. Effets des techniques culturales

Natural factors such as the environment in which the vine is grown play an important role in the quality of the wine. If you want to produce a good wine, it is indeed essential to produce quality grapes. To do this, we must enhance and optimize the terroir effect which, for the moment, plays a role that is not very well known. It is therefore essential, for example, to have scientifically established and well quantifiable relationships in order to have the system of areas of controlled origin accepted. R. Morlat (1989) and G. Seguin (1970) have already carried out studies on the role of certain soil factors on grape quality. In particular, they showed the importance of soil temperature and water content.

Ecodesign tools and approaches in viticulture for professionals and learners, contributions of the Vitarbae project

The agro-ecological transition in winegrowing can benefit from the environmental assessment of practices to inform producers’ technical choices. life cycle assessment (lca) evaluates the environmental impact of a product over its entire life cycle. this paper takes a look at the tools available for the detailed assessment and eco-design of winegrowing practices, their uses and developments in the vitarbae research project (2023-2026). this project aims to establish and equip support and training courses for the agroecological transition in viticulture and fruit arboriculture.

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]

Effects of environmental factors and vineyard pratices on wine flora dynamics

he intensification of t vineyard practices led to an impoverishment of the biological diversity. In vineyard management, the reflection to reduce pesticides uses concerns mainly the soil management of the vineyard, and often focuses on flora management in the inter-row.