terclim by ICS banner
IVES 9 IVES Conference Series 9 Unravel the underlying mechanisms of delaying ripening techniques in grapevine

Unravel the underlying mechanisms of delaying ripening techniques in grapevine

Abstract

In a scenario of changing climate conditions, grapevine is significantly affected at multiple levels. Advancements in phenology and berry ripening, however, are the major dynamics of the generalized increase in average temperature and evaporative demand, negatively affecting berry quality and productivity. The aim of this work was to unravel the underlying mechanisms of bunch-zone auxin application (NAA; 1-Naphthaleneacetic acid) and source-limiting canopy management approaches in delaying berry ripening. In randomized block design experiments, control vines were compared to vines treated with NAA, subjected to apical-to-bunch defoliation or antitranspirant application (n=10-to-42 plants per treatment). Juice chemical analysis, berry ripening kinetics and physiological traits were monitored every week from pre-veraison over multiple vineyards, years (2021, 2022, 2023) and varieties (Chardonnay, Pinot gris, Syrah, Merlot). Overall, all the treatments delayed berry ripening, and in particular °Brix build up, by 7 to up 15 days. Opposite trends were observed for total acidity, particularly malic acid concentration that displayed a slower degradation kinetic post-veraison. Time course expression profile of ripening-associated transcription factors revealed a significant and consistent repression for VviNAC60VviNAC33VviBHLH75VviWRKY19, VviERF45 following the application of delaying ripening techniques. Similarly, abscisic acid and Indole-3-acetic acid concentration in the berry were modulated by treatments, with specific variation for their free and conjugated forms. This work enlightens, for the first time, the mechanistic framework of berry ripening dynamics following specific treatments with different mechanisms of action and provides novel avenues to harmonize management approaches in grapevine in the context of climate change.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Michele Faralli1,2*, Oscar Bellon3, Sara Zenoni3, Massimo Bertamini1,2, Domenico Masuero2, Urska Vrhovsek2, Stefania Pilati2, Claudio Moser2

1 Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige, Italy
2 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
3 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy

Contact the author*

Keywords

Delaying ripening, Climate change, Auxin, Juice quality, transcription factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effets de l’application d’acide gibbérellique (GA3) sur la qualité de raisins et de vins produits en climat tropical au Nord-Est du Brésil

The honeydew moth Cryptoblabes gnidiella is the main problem for the wineries in the Northeast of the Brazil, because it attacks the bunch and reduces the quality of the grapes and the wines. In order to stretch out the bunch to facilitate the penetration of the insecticides, it was used gibberellic acid. Six treatments with different concentrations and different dates of application, and the control were compared.

Contribution of viticultural and oenological factors to the aromatic potential of white Colombard wines from the south west of France Gascony vineyard

The aim of this work is to determine the influence of viticultural and oenological factors to the aromatic potential of white wines from Colombard variety in the south west of France Gascony vineyard.

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

Perceptions of livestock integration in South African vineyards

Context and purpose of the study. Conventional viticulture relies heavily on synthetic inputs (fertilizers, pesticides), as well as mechanization to manage pests, weeds, and diseases and maximize yields.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).