terclim by ICS banner
IVES 9 IVES Conference Series 9 Unravel the underlying mechanisms of delaying ripening techniques in grapevine

Unravel the underlying mechanisms of delaying ripening techniques in grapevine

Abstract

In a scenario of changing climate conditions, grapevine is significantly affected at multiple levels. Advancements in phenology and berry ripening, however, are the major dynamics of the generalized increase in average temperature and evaporative demand, negatively affecting berry quality and productivity. The aim of this work was to unravel the underlying mechanisms of bunch-zone auxin application (NAA; 1-Naphthaleneacetic acid) and source-limiting canopy management approaches in delaying berry ripening. In randomized block design experiments, control vines were compared to vines treated with NAA, subjected to apical-to-bunch defoliation or antitranspirant application (n=10-to-42 plants per treatment). Juice chemical analysis, berry ripening kinetics and physiological traits were monitored every week from pre-veraison over multiple vineyards, years (2021, 2022, 2023) and varieties (Chardonnay, Pinot gris, Syrah, Merlot). Overall, all the treatments delayed berry ripening, and in particular °Brix build up, by 7 to up 15 days. Opposite trends were observed for total acidity, particularly malic acid concentration that displayed a slower degradation kinetic post-veraison. Time course expression profile of ripening-associated transcription factors revealed a significant and consistent repression for VviNAC60VviNAC33VviBHLH75VviWRKY19, VviERF45 following the application of delaying ripening techniques. Similarly, abscisic acid and Indole-3-acetic acid concentration in the berry were modulated by treatments, with specific variation for their free and conjugated forms. This work enlightens, for the first time, the mechanistic framework of berry ripening dynamics following specific treatments with different mechanisms of action and provides novel avenues to harmonize management approaches in grapevine in the context of climate change.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Michele Faralli1,2*, Oscar Bellon3, Sara Zenoni3, Massimo Bertamini1,2, Domenico Masuero2, Urska Vrhovsek2, Stefania Pilati2, Claudio Moser2

1 Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige, Italy
2 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
3 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy

Contact the author*

Keywords

Delaying ripening, Climate change, Auxin, Juice quality, transcription factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed.

Optimized protocol for high-quality RNA extraction from grape tissues using sorbitol pre-wash

Obtaining high-quality RNA from grape tissues, including berry pulp, berry skins, stems, rachis, or roots, is challenging due to their composition, which includes polysaccharides, phenolic compounds, sugars, and organic acids that can negatively affect RNA extraction. For instance, polyphenols and other secondary metabolites can bind to RNA, making it difficult to extract a pure sample. Additionally, RNA can co-precipitate with polysaccharides, leading to lower extraction yield. Also, sugars and organic acids can interfere with the pH and ionic properties of the extraction buffer. To address these challenges, we optimized a protocol for RNA isolation from grape tissues.

Vinhos de talha: to pitch or not to pitch

In Alentejo, south of Portugal there is a traditional way of fermenting wines in clay vessels, known as “Vinhos de Talha”. Clay vessels were traditionally impermeabilized using pine pitch, creating a barrier between the fermenting must and the clay. Due to this unusual production technology that uses of clay vessels, instead of inox or wood vessels, “Vinhos de Talha” present unique characteristics increasingly appreciated by national and international consumers when compared with wine obtained by the said traditional methods of winemaking. Although the positive consumers feedback, there is little literature about the physical-chemical characteristics of these wines (Martins et al, 2018; Cabrita et al, 2018). This work aims to characterize the volatile composition of white wines produced in clay vessels with different coatings and to contribute to the knowledge and preservation of these wines that are a unique cultural heritage. Wine samples were produced during 2019 vintage from white grapes, using the traditional technology associated to these wines.

High and extreme high temperature effects on shiraz berry composition 

Climate change is leading to a rise in average temperature and in the frequency and severity of heatwaves, and is already significantly disturbing grapevine phenology and berry composition. With the evolution of the weather of Australian grape growing regions that are already warm and hot, flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted. These compounds include anthocyanins and tannins which contribute substantially to grape and wine quality. The goals of this project were to determine if berry tannin accumulation is sensitive to high temperature and to enhance knowledge on upper temperature limits for viable wine production, in turn informing critical timing for mitigation strategies.

Evolution of chemical pattern related to Valpolicella aroma ‘terroir’ during bottle aging

Valpolicella is a famous Italian wine-producing region. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years require wines. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.