terclim by ICS banner
IVES 9 IVES Conference Series 9 Unravel the underlying mechanisms of delaying ripening techniques in grapevine

Unravel the underlying mechanisms of delaying ripening techniques in grapevine

Abstract

In a scenario of changing climate conditions, grapevine is significantly affected at multiple levels. Advancements in phenology and berry ripening, however, are the major dynamics of the generalized increase in average temperature and evaporative demand, negatively affecting berry quality and productivity. The aim of this work was to unravel the underlying mechanisms of bunch-zone auxin application (NAA; 1-Naphthaleneacetic acid) and source-limiting canopy management approaches in delaying berry ripening. In randomized block design experiments, control vines were compared to vines treated with NAA, subjected to apical-to-bunch defoliation or antitranspirant application (n=10-to-42 plants per treatment). Juice chemical analysis, berry ripening kinetics and physiological traits were monitored every week from pre-veraison over multiple vineyards, years (2021, 2022, 2023) and varieties (Chardonnay, Pinot gris, Syrah, Merlot). Overall, all the treatments delayed berry ripening, and in particular °Brix build up, by 7 to up 15 days. Opposite trends were observed for total acidity, particularly malic acid concentration that displayed a slower degradation kinetic post-veraison. Time course expression profile of ripening-associated transcription factors revealed a significant and consistent repression for VviNAC60VviNAC33VviBHLH75VviWRKY19, VviERF45 following the application of delaying ripening techniques. Similarly, abscisic acid and Indole-3-acetic acid concentration in the berry were modulated by treatments, with specific variation for their free and conjugated forms. This work enlightens, for the first time, the mechanistic framework of berry ripening dynamics following specific treatments with different mechanisms of action and provides novel avenues to harmonize management approaches in grapevine in the context of climate change.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Michele Faralli1,2*, Oscar Bellon3, Sara Zenoni3, Massimo Bertamini1,2, Domenico Masuero2, Urska Vrhovsek2, Stefania Pilati2, Claudio Moser2

1 Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige, Italy
2 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
3 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy

Contact the author*

Keywords

Delaying ripening, Climate change, Auxin, Juice quality, transcription factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Grapevine performances in five areas of ‘Chianti Classico’ Comportement de la vigne en cinq zones des « Chianti Classico »

The research was carried out in the ‘Chianti Classico’ area and it was part of the ‘Chianti Classico 2000’ research project. The performances ‘Sangiovese’ grapevine

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci. 22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Cover crops competition for water in vineyards: case studies in mediterranean terroirs

Vineyard cover cropping is a cultural practice widely used in many of the world’s winegrowing regions being one of the most recommended practices to face climate changes and to promote vineyard environmental sustainability.

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.