terclim by ICS banner
IVES 9 IVES Conference Series 9 Unravel the underlying mechanisms of delaying ripening techniques in grapevine

Unravel the underlying mechanisms of delaying ripening techniques in grapevine

Abstract

In a scenario of changing climate conditions, grapevine is significantly affected at multiple levels. Advancements in phenology and berry ripening, however, are the major dynamics of the generalized increase in average temperature and evaporative demand, negatively affecting berry quality and productivity. The aim of this work was to unravel the underlying mechanisms of bunch-zone auxin application (NAA; 1-Naphthaleneacetic acid) and source-limiting canopy management approaches in delaying berry ripening. In randomized block design experiments, control vines were compared to vines treated with NAA, subjected to apical-to-bunch defoliation or antitranspirant application (n=10-to-42 plants per treatment). Juice chemical analysis, berry ripening kinetics and physiological traits were monitored every week from pre-veraison over multiple vineyards, years (2021, 2022, 2023) and varieties (Chardonnay, Pinot gris, Syrah, Merlot). Overall, all the treatments delayed berry ripening, and in particular °Brix build up, by 7 to up 15 days. Opposite trends were observed for total acidity, particularly malic acid concentration that displayed a slower degradation kinetic post-veraison. Time course expression profile of ripening-associated transcription factors revealed a significant and consistent repression for VviNAC60VviNAC33VviBHLH75VviWRKY19, VviERF45 following the application of delaying ripening techniques. Similarly, abscisic acid and Indole-3-acetic acid concentration in the berry were modulated by treatments, with specific variation for their free and conjugated forms. This work enlightens, for the first time, the mechanistic framework of berry ripening dynamics following specific treatments with different mechanisms of action and provides novel avenues to harmonize management approaches in grapevine in the context of climate change.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Michele Faralli1,2*, Oscar Bellon3, Sara Zenoni3, Massimo Bertamini1,2, Domenico Masuero2, Urska Vrhovsek2, Stefania Pilati2, Claudio Moser2

1 Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige, Italy
2 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
3 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy

Contact the author*

Keywords

Delaying ripening, Climate change, Auxin, Juice quality, transcription factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

Chitosan is an effective antimicrobial agent available in the wine industry, because it ensures the control of a of spoilage microorganisms, such as Brettanomyces of lactic acid bacteria.

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a Southwestern France vineyard

The soil plays a pivotal role in the agroecological transition processes, due to its numerous implications in production support, water regulation, air and nutrient supply, and its function of reservoir for the major part of planet biodiversity. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it gathered winegrowers from the south-west of France (Gascony), scientists, advisors and technicians, around a project focused on the biological functioning of viticultural soil and the design of better-adapted technical paths for soil protection.

Impact of grapevine leafroll virus infections on vine physiology and the berry transcriptome

Grapevine leafroll associated virus (GLRaV) infections deteriorate vine physiological performance and cause high losses of yield and fruit quality

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress.

Impact of red blotch disease on Cabernet Sauvignon and Merlot grape and wine composition and wine sensory attributes

Grapevine Red Blotch disease (RB) is a recently discovered disease that has become a major concern for the viticulture and winemaking industry in California, USA. The causal
agent, Grapevine Red Blotch Virus (GRBV) was identified in 2011 and its presence was confirmed in several states in the US, in Canada, and in Switzerland. It has been demonstrated that RB compromised the regulation of ripening by suppressing specific ripening events, altering the expression patterns of transcription factors and causing hormonal imbalances in Zinfandel.