terclim by ICS banner
IVES 9 IVES Conference Series 9 Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 


Soil management through cover crops can influence the cycle of nutrients, promote water infiltration, decrease erosion, and enhance the soil microbiota biodiversity, improving the grapevine performance. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in semi-arid climates. Use of covers under-vine might be an alternative to these practices aiming at grapevine quality and soil health improvement. The aim of this research was to study the implications of soil management under the vines (cultivation and cover crops) on growth, yield, berry composition and soil microbial communities. A cover crop composed by a mixture of legumes was sown and compared with a control (cultivation), which includes frequent tillage to keep the soil bare, in three areas characterized by different edaphoclimatic conditions in the region of Navarra.

The use of cover crops under the vines tended to decrease vegetative growth and increase yield, although these differences were modulated by the edaphoclimatic characteristics of the area. Few effects were observed on berry quality at harvest, with only some variations on berry mass and malic acid content in the cover cropped treatment. On the other hand, soil health indicators were improved, the cover crop establishment accounting for a better nutrient profile in soils and microbial diversity. In conclusion, the use of under-vine covers could be an alternative to conventional management to control the growth of adventitious vegetation with little competition with the vines and improved soil quality.


Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster


A. Fernández-Morales1, I. Virto3, M. Velaz1, Isabel de Soto3, Alberto Enrique3, M. Loidi1, M. Galar1, L.G. Santesteban1,2, N. Torres1,2*

1  Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Navarra, Spain
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona, Spain
3 Dept. of Sciences, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Navarra, Spain

Contact the author*


Berry quality, legumes, soil health, soil management, vineyard-living microbiota


IVES Conference Series | Open GPB | Open GPB 2024


Related articles…

Using GIS to assess the terroir potential of an Oregon viticultural region

Deciding to grow grapes in Oregon is complex issue due to our diverse geography, climate, and relatively short history of grape growing. For any potential grape grower, vineyard site selection is the single most important decision they will face.

Estimating grapevine water status: a combined analysis of hyperspectral image and 3d point clouds

Mild to moderate and timely water deficit is desirable in grape production to optimize fruit quality for winemaking. It is crucial to develop robust and rapid approaches to assess grapevine water stress for scheduling deficit irrigation. Hyperspectral imaging (HSI) has the potential to detect changes in leaf water status, but the robustness and accuracy are restricted in field applications.

Observation and modeling of climate at fine scales in wine-producing areas

Global change in climate affect regional climates and hold implications for viticulture worldwide. Despite numerous studies on the impact of projected global warming on different regions


During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.
The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.