terclim by ICS banner
IVES 9 IVES Conference Series 9 Effects of stress memory on grapevine resilience in response to recurrent drought and recovery events 

Effects of stress memory on grapevine resilience in response to recurrent drought and recovery events 

Abstract

Plants have evolved different strategies to cope with environmental stresses and, although still debated, it was observed that they can remember past stress occurrence.

Anatomical and physiological adjustments have been observed in different grapevine cultivars after repeated drought exposure, however epigenetic, transcriptional and biochemical changes associated with drought-primed ecological memory have been poorly studied.

This work was conceived to test whether exposure to recurring events of mild drought could prime vines to endure severe drought stress. Particularly, we investigated whether the expected improved stress tolerance of Vitis vinifera cv Nebbiolo plants subjected over years to moderate and long-lasting water stress events (WS-primed) depended on molecular memory phenomena or on resetting of stress-induced signals. To this aim, a combined multidisciplinary approach, involving eco-physiological, anatomical, biochemical and molecular analyses was adopted. First results revealed that WS-primed vines had reduced gas exchange in well-watered conditions, but at the end of WS imposition were able to maintain higher transpiration and assimilation rates with respect to unprimed plants. Moreover, WS-primed plants accumulated lower amounts of root abscisic acid and had higher content of resveratrol and viniferin, suggesting an increased antioxidant capacity that could help them in counteracting stress effects at the cellular level. WGBS analysis is ongoing to profile changes in DNA methylation landscapes in search of epigenetic signatures associated with specific transcriptome and physiological modifications.

In a future perspective, the gained information will deliver a predictive framework to estimate the impact of moderately dry periods on vine performance, considering memory-associated protective effects against drought.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Amedeo Moine1, Paolo Boccacci1, Walter Chitarra1,2, Luca Nerva1,2, Giorgio Gambino1, Irene Perrone1, Chiara Pagliarani1*

1 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)

Contact the author*

Keywords

eco-physiology, recurring drought, priming, transcriptome reprogramming, epigenetic signature

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Aromatic profile of Savatiano Greek Grape Variety as affected by various terroirs in the PGI zone of Attica.

Regionality, frequently called terroir, is often used to market wines from different locations. Savatiano (Vitis Vinifera L.), is the dominant indigenous variety of the Mesogeia – Attiki region, reaching a percentage of 70% of the total vine cultivation, and being the most widely planted variety in Greece. In this context, this research focuses on the evaluation of the impact of different terroirs within the PGI Attiki zone on the aromatic profile of Savatiano.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Advanced phenology due to climate change is projected to shift precipitation patterns for key cultivar-region combinations in New Zealand

Context of the study. Shifts in grapevine phenology driven by temperature increase due to climate change may result in different rainfall profiles between phenological stages.

Comparative QTL mapping of phenology traits in three cross populations of grapevine

Long-term studies on grapevine phenology have clearly demonstrated that global warming is affecting phenological events, leading to an anticipation in their timing, and negatively impacting grape yield and berry quality. Therefore, dissecting the genetic determinants involved in the plant regulation of the phenological stages of budburst, flowering, veraison and ripening can improve our knowledge of the underlying mechanisms and support plant breeding programs and the advancement of vineyard management strategies.
We report here the results of a QTL mapping experiment conducted on three segregating populations obtained from the crossing of ‘Cabernet Sauvignon’ and ‘Corvina’, ‘Corvina’ and the hybrid ‘Solaris’ and ‘Rhine Riesling’ and ‘Cabernet Sauvignon’.

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.