terclim by ICS banner
IVES 9 IVES Conference Series 9 Effects of stress memory on grapevine resilience in response to recurrent drought and recovery events 

Effects of stress memory on grapevine resilience in response to recurrent drought and recovery events 

Abstract

Plants have evolved different strategies to cope with environmental stresses and, although still debated, it was observed that they can remember past stress occurrence.

Anatomical and physiological adjustments have been observed in different grapevine cultivars after repeated drought exposure, however epigenetic, transcriptional and biochemical changes associated with drought-primed ecological memory have been poorly studied.

This work was conceived to test whether exposure to recurring events of mild drought could prime vines to endure severe drought stress. Particularly, we investigated whether the expected improved stress tolerance of Vitis vinifera cv Nebbiolo plants subjected over years to moderate and long-lasting water stress events (WS-primed) depended on molecular memory phenomena or on resetting of stress-induced signals. To this aim, a combined multidisciplinary approach, involving eco-physiological, anatomical, biochemical and molecular analyses was adopted. First results revealed that WS-primed vines had reduced gas exchange in well-watered conditions, but at the end of WS imposition were able to maintain higher transpiration and assimilation rates with respect to unprimed plants. Moreover, WS-primed plants accumulated lower amounts of root abscisic acid and had higher content of resveratrol and viniferin, suggesting an increased antioxidant capacity that could help them in counteracting stress effects at the cellular level. WGBS analysis is ongoing to profile changes in DNA methylation landscapes in search of epigenetic signatures associated with specific transcriptome and physiological modifications.

In a future perspective, the gained information will deliver a predictive framework to estimate the impact of moderately dry periods on vine performance, considering memory-associated protective effects against drought.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Amedeo Moine1, Paolo Boccacci1, Walter Chitarra1,2, Luca Nerva1,2, Giorgio Gambino1, Irene Perrone1, Chiara Pagliarani1*

1 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)

Contact the author*

Keywords

eco-physiology, recurring drought, priming, transcriptome reprogramming, epigenetic signature

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Study of the “Charentes terroir” for wine production of Merlot and Sauvignon: method, installation of the experimental device, first results

Cognac vineyard is mainly dedicated to brandy production. Within the vineyard restructuring context, one part is turned over wine varieties for wine production (about 1,500 ha planted from 1999 to 2005). Today, the new wine producers need technical references about qualitative potential of the « Charentes Terroir », varieties and adapted vineyard management.
In order to answer to this professional request, an observatory of 18 plots of Merlot and 12 plots of Sauvignon have been laid out since 2003 and 2004 on various kinds of pedoclimate.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Tomatoes and Grapes: berry fruits with a (bright) biotech future?

Tomatoes and Grapes are berries that are genetically related and therefore at least partially their developmental pathways leading to a fleshy fruit should share some of the components. In a sense knowledge obtained from the model plant tomato could be useful for grape and conversely the more amenable tomato can be used to test some hypothesis that would be difficult to obtain in grape. Research in my lab and other labs have led to a better understanding of the molecular genetics mechanisms underlying fruit development and ripening in tomato and more specifically those related to metabolite accumulation that may lead to changes in fruit nutritional and flavor composition. This research has involved the use of genetic variability in natural population, but also biparental population and genetically engineered lines that are easy to develop in tomato tomato but not in grape. NGTs also can be easily implemented in tomato to not only speed up the gene-to-trait but also develop new tomato varieties.

Development of analytical sampling technique to study the aroma profile of Pinot Noir wine

A novel and efficient Dispersive Liquid-Liquid Microextraction (DLLME) method coupled with gas chromatography–mass spectrometry (GC–MS) was developed to determine 33 key aroma compounds (esters, alcohols, aldehydes, terpenes, norisoprenoids, fatty acids and phenols) present in Pinot noir (PN) wine. Four critical parameters including extraction solvent type, disperse solvent type, extraction solvent volume and disperse solvent volume were optimised with the aid of D-optimal design.

Impact of monopolar and bipolar pulsed electric fields on the quality of Tinta Roriz wines

Pulsed electric fields (pef) technology holds significant promise for the agrifood industry, considering the capacity of inducing cell electroporation, due to the disruption of cellular membranes. Pef-induced permeabilization is dependent of the chosen treatment protocol (i.e. Pulse shape, electrical field strength, specific energy) and of the matrix’s characteristics (i.e. Cell radii and size, ph, electrical conductivity).