terclim by ICS banner
IVES 9 IVES Conference Series 9 Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

Abstract

As the climate warms, the focus of concern in viticulture often turns to how higher temperatures may shift growing regions, change the character of AVAs, and alter fruit quality. However, climate warming is increasing most quickly during the winter dormancy cycle, a critical and often underappreciated portion of the grapevine life cycle.  In response to decreasing temperatures and decreasing daylength, grapes initiate a series of physiological changes to enter dormancy, acquire freeze resistance, and time spring phenology such that the growing season begins after threat of frost.  We have been working to understand the connections between temperature perception and dormancy physiology in grapevine through field and growth chamber experiments.  Examining 30 different cultivars over 3 years, we have uncovered a critical link between the depth of freeze resistance, the interaction with chilling accumulation, and the eventual timing of spring budbreak. Results demonstrate that chilling accumulation and perception is conserved across diverse grapevine cultivars and the perceived difference in chill requirement for synchronous budbreak is largely driven by variation in thermal efficiency (deacclimation resistance) during ecodormancy. Phenotypic variation in maximal cold hardiness and deacclimation resistance suggest adaptive potential in different wild grape species that can be tapped for a world of erratic climate.      

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Jason P Londo1, Alisson P Kovaleski2

1Cornell University
2University of Wisconsin-Madison

Contact the author*

Keywords

Cold Hardiness, winter survival, deacclimation, dormancy, phenology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of different packaging materials on table grape quality preservation during cold storage

During cold storage, grapes undergo changes that affect their visual, mechanical, and organoleptic properties, potentially impacting quality and negatively influencing consumer acceptance. Key parameters include uniform color, crunchiness, and flesh consistency. We evaluated the influence of two distinct packaging methods on the chromatic characteristics, hardness, and pedicel detachment resistance of fourteen new seedless white and red grape varieties during cold storage. These factors are crucial for maintaining the quality of the product and extending its shelf-life. The novel grape varieties were obtained through a breeding program at CREA-VE of Turi, Southern Italy.

Development of a new lab-scale carbonation method for applications to sparkling wines

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their
visual appearance, aromas and mouthfeel.

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…

Mining belowground and aboveground microbiome data to identify microbial biomarkers of grapevine health and yield

Vineyards are home to a wide diversity of microorganisms that interact with plants and with each other.