terclim by ICS banner
IVES 9 IVES Conference Series 9 Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

Abstract

As the climate warms, the focus of concern in viticulture often turns to how higher temperatures may shift growing regions, change the character of AVAs, and alter fruit quality. However, climate warming is increasing most quickly during the winter dormancy cycle, a critical and often underappreciated portion of the grapevine life cycle.  In response to decreasing temperatures and decreasing daylength, grapes initiate a series of physiological changes to enter dormancy, acquire freeze resistance, and time spring phenology such that the growing season begins after threat of frost.  We have been working to understand the connections between temperature perception and dormancy physiology in grapevine through field and growth chamber experiments.  Examining 30 different cultivars over 3 years, we have uncovered a critical link between the depth of freeze resistance, the interaction with chilling accumulation, and the eventual timing of spring budbreak. Results demonstrate that chilling accumulation and perception is conserved across diverse grapevine cultivars and the perceived difference in chill requirement for synchronous budbreak is largely driven by variation in thermal efficiency (deacclimation resistance) during ecodormancy. Phenotypic variation in maximal cold hardiness and deacclimation resistance suggest adaptive potential in different wild grape species that can be tapped for a world of erratic climate.      

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Jason P Londo1, Alisson P Kovaleski2

1Cornell University
2University of Wisconsin-Madison

Contact the author*

Keywords

Cold Hardiness, winter survival, deacclimation, dormancy, phenology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.

Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Aging wine on lees benefits different wine sensory and technological properties including an enhanced resistance to oxidation. Several molecules released by yeast, such as membrane sterols and glutathione, have been previously proposed as key factors for this activity [1].

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

Influence of the carbonic maceration winemaking method on the colour features of Tempranillo red wines

During recent years, carbonic maceration (CM) wines are increasingly demanded by consumers. The Spanish Rioja Qualified Designation of Origin (D.O.Ca. Rioja) is a winemaking area

Determining the impact of thiophenols on ashy flavor recognition in smoke-affected wines

Abstract
Wildfires are an increasing concern for wine-producing regions worldwide, as they generate smoke containing volatile organic compounds that can be transported over long distances and can be absorbed by wine grapes [1].