terclim by ICS banner
IVES 9 IVES Conference Series 9 Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

Abstract

As the climate warms, the focus of concern in viticulture often turns to how higher temperatures may shift growing regions, change the character of AVAs, and alter fruit quality. However, climate warming is increasing most quickly during the winter dormancy cycle, a critical and often underappreciated portion of the grapevine life cycle.  In response to decreasing temperatures and decreasing daylength, grapes initiate a series of physiological changes to enter dormancy, acquire freeze resistance, and time spring phenology such that the growing season begins after threat of frost.  We have been working to understand the connections between temperature perception and dormancy physiology in grapevine through field and growth chamber experiments.  Examining 30 different cultivars over 3 years, we have uncovered a critical link between the depth of freeze resistance, the interaction with chilling accumulation, and the eventual timing of spring budbreak. Results demonstrate that chilling accumulation and perception is conserved across diverse grapevine cultivars and the perceived difference in chill requirement for synchronous budbreak is largely driven by variation in thermal efficiency (deacclimation resistance) during ecodormancy. Phenotypic variation in maximal cold hardiness and deacclimation resistance suggest adaptive potential in different wild grape species that can be tapped for a world of erratic climate.      

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Jason P Londo1, Alisson P Kovaleski2

1Cornell University
2University of Wisconsin-Madison

Contact the author*

Keywords

Cold Hardiness, winter survival, deacclimation, dormancy, phenology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Cell wall remodeling mediated by specific PME genes plays a role in grapevine response to Botrytis cinerea

Botrytis cinerea (Bc) is one of the main pathogens affecting the cultivated grapevine. A key role in grapevine tissue colonization is played by cell wall (CW) remodeling driven by CW Modifying Enzymes (CWMEs), expressed both by the host and the pathogen. Their action can impact CW integrity and trigger specific immune signaling, thus influencing Bc infection outcome. To further characterize the role of the CW in the grapevine response to Bc, two contrasting genotypes in their resistance to the fungus were artificially inoculated at full bloom. RNA-seq analysis and biochemical characterization of the CW and its modification in samples collected at 24 hours post-inoculation highlighted significant differences between genotypes.

Les micro-zones et les technologies traditionnelles de la viniculture en Géorgie

La Géorgie est un pays d’une tradition très ancienne de viticulture et de viniculture. Là, dans les micro zones spécifiques, en précisant le lieu on produit de différents types du vin d’une

Le pays du Brulhois

Depuis un an, nous essayons de mettre en place un projet de développement socio-économique et culturel d’une zone située essentiellement au sud de la Garonne et à cheval sur 3 départements (le Lot et Garonne, le Gers et le Tam et Garonne) et sur 2 régions (l’Aquitaine et Midi Pyrénées): le pays du Brulhois, “porte de la Gascogne”.

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks.

Grapegrowing soils

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant