terclim by ICS banner
IVES 9 IVES Conference Series 9 Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Abstract

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2(approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2). Abaxial leaf imprints revealing that both varieties reached their highest stomatal density in the early years of the study. Riesling leaves exhibited a higher density compared to Cabernet Sauvignon. In a warmer year like 2020, both varieties responded with a lower density. With continuously exposition to eCO2 the differences in stomatal conductance became increasingly negligible. The net photosynthesis of both varieties peaked in the later and warmer period of the study (2018 – 2022), with plants under elevated CO2 concentration achieving significantly higher assimilation rates. Accompanying this, plants under aCO2 conditions exhibited a higher non-photochemical quenching, whereas electron transport rate and photochemical quenching under eCO2 conditions were higher. Long-term studies are necessary to estimate the consequences for growers in the future.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Susanne Tittmann*, Lilian Schmidt, Manfred Stoll

University Geisenheim, Department of general and organic viticulture, Von-Lade-Str. 1, D-65366 Geisenheim, Germany

Contact the author*

Keywords

climate change, viticulture, grapevine physiology, elevated CO2 concentration, FACE facility

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Vineyard microclimate alterations induced by black mulch through transcriptome reshaped the flavoromics of Cabernet Sauvignon

To alter the vineyard microclimate and produce quality wine under a semi-arid climate, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017). The grapes were sampled at three growing stages to conduct the untargeted metabolome and transcriptome analysis. The upregulated genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered severe heat stress, resulting in lower sugar and higher acids at harvest. The integration of metabolome and transcriptome analysis identified the key genes responsible for the enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes and norisoprenoids concentrations in M grapes.

Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Grapevine powdery mildew resistance is a key target for grape breeders and grape growers worldwide. The driver of the USDA-NIFA-SCRI VitisGen3 project is completing the pipeline from germplasm identification to QTL to candidate gene characterization to new cultivars to vineyards to consumers. This is a common thread across such projects internationally. We will discuss how our objectives and approaches leverage big data to advance this initiative, starting with genomics and computer vision phenotyping for gene discovery and genetic improvement. To manage and maintain resistances for long-term sustainability, growers will be trained through our nation-wide extension and outreach plan.

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.

Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability

SO2 reaction with electrophilic species present in wine, including in particular carbonyl compounds, is responsible for the reduction of its protective effect during wine aging. In the present study, direct 1H NMR profiling was used to monitor the reactivity of SO2 with acetaldehyde under wine-like oxidation conditions.

Impact of grape ripening and post-harvest withering on must composition and fermentation kinetics

Postharvest dehydration is a widely employed technique in winemaking to enhance sugar concentration and secondary metabolites from grapes. Different grape varieties exhibit varying responses in terms of dehydration rate and the resulting chemical composition.