terclim by ICS banner
IVES 9 IVES Conference Series 9 Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Abstract

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2(approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2). Abaxial leaf imprints revealing that both varieties reached their highest stomatal density in the early years of the study. Riesling leaves exhibited a higher density compared to Cabernet Sauvignon. In a warmer year like 2020, both varieties responded with a lower density. With continuously exposition to eCO2 the differences in stomatal conductance became increasingly negligible. The net photosynthesis of both varieties peaked in the later and warmer period of the study (2018 – 2022), with plants under elevated CO2 concentration achieving significantly higher assimilation rates. Accompanying this, plants under aCO2 conditions exhibited a higher non-photochemical quenching, whereas electron transport rate and photochemical quenching under eCO2 conditions were higher. Long-term studies are necessary to estimate the consequences for growers in the future.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Susanne Tittmann*, Lilian Schmidt, Manfred Stoll

University Geisenheim, Department of general and organic viticulture, Von-Lade-Str. 1, D-65366 Geisenheim, Germany

Contact the author*

Keywords

climate change, viticulture, grapevine physiology, elevated CO2 concentration, FACE facility

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Matériel végétal et valorisation des terroirs viticoles

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Stomatal restrictions to photosynthesis in grapevine cultivars grown in a semiarid environment

Diurnal changes in the leaves of field-grown grapevine (Vitis vinifera L.) cultivars Syrah and Tempranillo were followed over summer 2009 with respect to gas exchanges. Net photosynthetic rate (AN) of both cultivars rapidly increased in the morning, decreasing slowly until the late afternoon, when reached the lowest values.

Switch genes as a key to understand the grapevine ripening disorder berry Shrivel?

The ripening of grapevine berries encompasses complex morphological and physiological processes, especially at veraison. Berry shrivel (BS) is a ripening physiological disorder affecting grape berries with visible symptoms appearing short after veraison. The main symptoms of BS are a strong reduction in sugar accumulation, inhibited anthocyanin biosynthesis and high pH values. The most popular red grape cultivar in Austria “Blauer Zweigelt” (Vitis vinifera L.) is specifically prone to develop the BS ripening disorder and up to date a no specific cause or causes could be identified. Recently omics approaches have identified and characterized key processes during grapevine ripening. Among them a small subset of genes, called SWITCH, have been described as markers for the onset of the ripening process in fruits.

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.