terclim by ICS banner
IVES 9 IVES Conference Series 9 Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Abstract

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2(approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2). Abaxial leaf imprints revealing that both varieties reached their highest stomatal density in the early years of the study. Riesling leaves exhibited a higher density compared to Cabernet Sauvignon. In a warmer year like 2020, both varieties responded with a lower density. With continuously exposition to eCO2 the differences in stomatal conductance became increasingly negligible. The net photosynthesis of both varieties peaked in the later and warmer period of the study (2018 – 2022), with plants under elevated CO2 concentration achieving significantly higher assimilation rates. Accompanying this, plants under aCO2 conditions exhibited a higher non-photochemical quenching, whereas electron transport rate and photochemical quenching under eCO2 conditions were higher. Long-term studies are necessary to estimate the consequences for growers in the future.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Susanne Tittmann*, Lilian Schmidt, Manfred Stoll

University Geisenheim, Department of general and organic viticulture, Von-Lade-Str. 1, D-65366 Geisenheim, Germany

Contact the author*

Keywords

climate change, viticulture, grapevine physiology, elevated CO2 concentration, FACE facility

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Metabolic response of vitis vinifera and interspecific vitis sp. varieties to heat stress, water deficit and combined stress, using a metabolomic approach

As greenhouse gas emissions continue to rise, climate projections indicate an increased likelihood of heat waves and drier conditions in canada. these changes pose significant challenges to grapevine cultivation, particularly during critical growth stages such as new plantings. interspecific hybrid grape varieties, developed through different breeding programs that combine vitis vinifera with more robust species like v. riparia and v. labrusca varieties, are often touted for their potential resilience to environmental stress.

Contribution of soil and atmospheric conditions to leaf water potential in grapevines

Etant lié au sol et aux conditions atmosphériques, le statut hydrique influence la physiologie de la vigne d’une part, mais joue aussi un role important en ce qui concerne la qualité du raisin et donc du vin d’autre part. Nous avons mesuré, dans la région de Stellenbosch, le statut hydrique sur des pieds de Sauvignon Blanc non irrigués, implantés sur 2 terroirs différents, l’un froid, l’autre plus chaud.

Influenza dell’esposizione del vigneto sulla maturazione dell’uva

Lo studio è stato condotto in vigneti commerciali di Vitis vinifera cv Nebbiolo localizzati in Piemonte, Italia del Nord-Ovest, intorno alla sommità di una collina. L’obiettivo dello studio è stato di determinare come l’esposizione del vigneto possa influenzare il comportamento vegetativo della vite, il manifestarsi delle fasi fenologiche, e la cinetica di maturazione dell’uva con particolare riguardo all’accumulo di antociani e flavonoli.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.

The “green gold” @fem: assessing grapevine germplasm diversity to crossbreed the varieties of the future

Context and purpose of the study. To date over 3,000 grapevine accessions have been collected at Fondazione Edmund Mach (FEM).