terclim by ICS banner
IVES 9 IVES Conference Series 9 Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Abstract

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2(approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2). Abaxial leaf imprints revealing that both varieties reached their highest stomatal density in the early years of the study. Riesling leaves exhibited a higher density compared to Cabernet Sauvignon. In a warmer year like 2020, both varieties responded with a lower density. With continuously exposition to eCO2 the differences in stomatal conductance became increasingly negligible. The net photosynthesis of both varieties peaked in the later and warmer period of the study (2018 – 2022), with plants under elevated CO2 concentration achieving significantly higher assimilation rates. Accompanying this, plants under aCO2 conditions exhibited a higher non-photochemical quenching, whereas electron transport rate and photochemical quenching under eCO2 conditions were higher. Long-term studies are necessary to estimate the consequences for growers in the future.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Susanne Tittmann*, Lilian Schmidt, Manfred Stoll

University Geisenheim, Department of general and organic viticulture, Von-Lade-Str. 1, D-65366 Geisenheim, Germany

Contact the author*

Keywords

climate change, viticulture, grapevine physiology, elevated CO2 concentration, FACE facility

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Moderate wine consumption as part of a Mediterranean diet and lifestyle under debate

Moderate wine consumption – with the meals – represents one of the beneficial components of the traditional mediterranean diet (med diet) and a positive item in the med diet score [1,2, 3]. The med diet is considered one of the best diets in the world and the world health organisation (who) identified this eating pattern as an effective strategy to prevent non-communicable diseases (ncd), since it is associated with lower disease occurrence and all-cause mortality [4] . Numerous well-conducted epidemiological studies have also reported that light-to-moderate intake of wine/alcoholic beverages is not only related to a reduced risk of cardiovascular disease, but also to all-cause mortality.

Evaluation of winegrape anthocyanins in the vineyard using a portable fluorimetric sensor: seasonal and water regime effects

Accumulation of anthocyanins (Anth) on whole winegrape (Vitis vinifera L.) bunches attached to the vine was monitored by a fluorescence-based sensor (Multiplex) on ‘Aleatico’ and ‘Nero d’Avola’. Different water regimes were applied.

Study of the fruity aroma of red wines through perceptual interactions among volatile compounds in the context of climate change for the Bordeaux vineyard

The fruity aroma of red wines is described by a wide range of descriptors, ranging from fresh fruits to ripe and jammy fruits, to candied fruits and prunes notes [1]. The fruity quality of a red wine is characterized by notes of fresh and jammy red- and black-berry fruits.

How to deal with the Green Deal – Resistant grapevine varieties to reduce the use of pesticides in the EU

With its Farm-to-Fork Strategy, which is a part of the European Green Deal, the European Union aims at reducing the amount of pesticides used in agriculture by 50% until 2030. As viticulture uses around 70% of the fungicides in the EU, there is substantial pressure on winemakers to reduce their pesticide input. On top of the political goal, winegrowers face increased pressure from the public demanding a more sustainable production of wine.

Effects of winemaking practices on Pinot blanc quality

Two winemaking processes for Pinot blanc were investigated following the chemical and sensory profiles for 12 months, aiming at: i) determining the chemical and sensory profiles