Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Water status modelling: impact of local rainfall variability in Burgundy (France)

Water status modelling: impact of local rainfall variability in Burgundy (France)

Abstract

Water status is a key factor in vine development and berry ripening. Water status is strongly affected by environmental parameters such as soil and climate. Whereas at local scale the soil variability is frequently accounted for, little scientific reports are available concerning the impact of local rainfall variability on grapevine water status. In order to accurately register the space and time variations of rainfall at local scale, a dense rain-gauges network has been installed in Burgundy. It is composed of 45 rain-gauges over a 28 km² area. Rainfall data collected by each rain-gauge in 2014 and 2015 was used as input variables in the grapevine water balance model proposed by Lebon et al (2003). All other climate variables, vineyard and soil parameters were kept strictly identical for each simulation in order to capture the consequences of the sole spatial variability of rainfall on vineyard water status.

As rainfall dynamics impact on the vineyard depends on the soil water content, water balance was modeled considering successively soils with low (50 mm) and medium (150 mm) soil water holding capacities, representative of the soils of the area. The daily fraction of transpirable soil water, averaged on the grape ripening period, was used as an output variable to assess the potential consequences of soil water status on grape characteristics.

During the 2014 (2015) vintage, the mean FTSW from veraison to harvest varied from 0.22 to 0.41 (0.09 to 0.25) for soils with low water capacity with an average difference of 0.04 (0.03). Ranges of 0.31 to 0.76 (0.09 to 0.16) with average differences of 0.09 (0.02) were observed for soils with higher water capacity in 2014 (2015). Therefore, it seems that the spatial variability of rainfall at local scale could significantly affect the vineyard water balance, depending on the vintage and the soil water capacity.
The contribution of local rainfall variability to vineyard water balance in comparison to other factors also impacting the vineyard water status is discussed.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Basile PAUTHIER (1), Luca BRILLANTE (2), Cornelis van LEEUWEN (3), Benjamin BOIS (1)

(1) Centre de Recherches de Climatologie, UMR 6282 CNRS/UB Biogéosciences, Université de Bourgogne-Franche-Comté, 6bd Gabriel 21000 Dijon. France
(2) Council for Agricultural Research and Economics, Viticulture Center, CREA-VIT, Via XXVIII Aprile 26, 31015 Conegliano,TV, Italy
(3) Bordeaux Sciences Agro, ISVV, UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F-33140 Villenave d’Ornon, France

Contact the author

Keywords

Water status, Model, Rainfall, High Resolution, Burgundy

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Screening of aroma metabolites within a set of 90 Saccharomyces strains

Currently, the main demand in the global wine market relies on products with unique flavour profiles, character, and typicity, and the metabolism of yeasts greatly influences the organoleptic properties of wines. Therefore, the natural diversity of Saccharomyces strains rises in interest over the last decade, but a large part of this phenotypic diversity remains unexplored

The use of zirconia dioxide enclosed in a metallic cage for the stabilisation of Chardonnay white wine

White wines are commonly stabilised by removing the heat unstable proteins through adsorption by bentonite, an effective but inefficient wine processing step. Alternative absorbents are thus sought and zirconium dioxide (zirconia) is recognised as a promising candidate.

Recognition of terroir in american viticultural areas

Un’ Area di Viticultura Americana, detta AVA, è una regione vinicola delimitata ed è dis­tinguibile da caratteristiche geografiche i cui confini sono stati definiti da regolamenti. Il sistema AVA rappresenta un ‘accettazione del concetto di terroir (terreno), come dimostra­no gli studi che confermano il carattere regionale dei vini AVA e dalla sviluppo di sub­denominazioni più relazionate al terreno.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

Enological and nutraceutical potential of some grape varieties tolerant to downy mildew and powdery mildew

AIM: Since 2012 the Veneto Region regulation (north-east Italy) allowed wine production using 20 hybrid grapevine varieties selected for their high tolerance to downy mildew and powdery mildew. Characterized by vigour, high grape productivity and low pesticide use, these varieties are suitable to develop sustainable viticulture in mountain areas located at medium altitudes.