Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Water status modelling: impact of local rainfall variability in Burgundy (France)

Water status modelling: impact of local rainfall variability in Burgundy (France)

Abstract

Water status is a key factor in vine development and berry ripening. Water status is strongly affected by environmental parameters such as soil and climate. Whereas at local scale the soil variability is frequently accounted for, little scientific reports are available concerning the impact of local rainfall variability on grapevine water status. In order to accurately register the space and time variations of rainfall at local scale, a dense rain-gauges network has been installed in Burgundy. It is composed of 45 rain-gauges over a 28 km² area. Rainfall data collected by each rain-gauge in 2014 and 2015 was used as input variables in the grapevine water balance model proposed by Lebon et al (2003). All other climate variables, vineyard and soil parameters were kept strictly identical for each simulation in order to capture the consequences of the sole spatial variability of rainfall on vineyard water status.

As rainfall dynamics impact on the vineyard depends on the soil water content, water balance was modeled considering successively soils with low (50 mm) and medium (150 mm) soil water holding capacities, representative of the soils of the area. The daily fraction of transpirable soil water, averaged on the grape ripening period, was used as an output variable to assess the potential consequences of soil water status on grape characteristics.

During the 2014 (2015) vintage, the mean FTSW from veraison to harvest varied from 0.22 to 0.41 (0.09 to 0.25) for soils with low water capacity with an average difference of 0.04 (0.03). Ranges of 0.31 to 0.76 (0.09 to 0.16) with average differences of 0.09 (0.02) were observed for soils with higher water capacity in 2014 (2015). Therefore, it seems that the spatial variability of rainfall at local scale could significantly affect the vineyard water balance, depending on the vintage and the soil water capacity.
The contribution of local rainfall variability to vineyard water balance in comparison to other factors also impacting the vineyard water status is discussed.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Basile PAUTHIER (1), Luca BRILLANTE (2), Cornelis van LEEUWEN (3), Benjamin BOIS (1)

(1) Centre de Recherches de Climatologie, UMR 6282 CNRS/UB Biogéosciences, Université de Bourgogne-Franche-Comté, 6bd Gabriel 21000 Dijon. France
(2) Council for Agricultural Research and Economics, Viticulture Center, CREA-VIT, Via XXVIII Aprile 26, 31015 Conegliano,TV, Italy
(3) Bordeaux Sciences Agro, ISVV, UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F-33140 Villenave d’Ornon, France

Contact the author

Keywords

Water status, Model, Rainfall, High Resolution, Burgundy

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

The importance of landscape in wine quality perception: l’importanza del paesaggio nella percezione qualitativa del vino

The wine quality is a characteristic that is both difficult to define and communicate, because the quality attributes can be divided into intrinsic (objective, such as alcohol degree, acidity

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

Impact of soil-applied and foliar-applied nitrogen on grape and wine composition

Foliar application of urea may be an efficient way to alter grape and wine composition without increasing vine vigor. However, we know little about the impact of this practice on phenolic compounds and yeast assimilable nitrogen (YAN). Adequate YAN is required for an efficient and complete fermentation, while phenolics are particularly important for the sensory profile of red wines. The goal of this study is to test the impact of foliar urea application at veraison, compared to the traditional soil-applied nitrogen fertilization early in the season, on Syrah berry and wine composition in field conditions.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.