Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Water status modelling: impact of local rainfall variability in Burgundy (France)

Water status modelling: impact of local rainfall variability in Burgundy (France)

Abstract

Water status is a key factor in vine development and berry ripening. Water status is strongly affected by environmental parameters such as soil and climate. Whereas at local scale the soil variability is frequently accounted for, little scientific reports are available concerning the impact of local rainfall variability on grapevine water status. In order to accurately register the space and time variations of rainfall at local scale, a dense rain-gauges network has been installed in Burgundy. It is composed of 45 rain-gauges over a 28 km² area. Rainfall data collected by each rain-gauge in 2014 and 2015 was used as input variables in the grapevine water balance model proposed by Lebon et al (2003). All other climate variables, vineyard and soil parameters were kept strictly identical for each simulation in order to capture the consequences of the sole spatial variability of rainfall on vineyard water status.

As rainfall dynamics impact on the vineyard depends on the soil water content, water balance was modeled considering successively soils with low (50 mm) and medium (150 mm) soil water holding capacities, representative of the soils of the area. The daily fraction of transpirable soil water, averaged on the grape ripening period, was used as an output variable to assess the potential consequences of soil water status on grape characteristics.

During the 2014 (2015) vintage, the mean FTSW from veraison to harvest varied from 0.22 to 0.41 (0.09 to 0.25) for soils with low water capacity with an average difference of 0.04 (0.03). Ranges of 0.31 to 0.76 (0.09 to 0.16) with average differences of 0.09 (0.02) were observed for soils with higher water capacity in 2014 (2015). Therefore, it seems that the spatial variability of rainfall at local scale could significantly affect the vineyard water balance, depending on the vintage and the soil water capacity.
The contribution of local rainfall variability to vineyard water balance in comparison to other factors also impacting the vineyard water status is discussed.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Basile PAUTHIER (1), Luca BRILLANTE (2), Cornelis van LEEUWEN (3), Benjamin BOIS (1)

(1) Centre de Recherches de Climatologie, UMR 6282 CNRS/UB Biogéosciences, Université de Bourgogne-Franche-Comté, 6bd Gabriel 21000 Dijon. France
(2) Council for Agricultural Research and Economics, Viticulture Center, CREA-VIT, Via XXVIII Aprile 26, 31015 Conegliano,TV, Italy
(3) Bordeaux Sciences Agro, ISVV, UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F-33140 Villenave d’Ornon, France

Contact the author

Keywords

Water status, Model, Rainfall, High Resolution, Burgundy

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Enhancing sustainability in viticulture through digital technologies: A case study from Smyrnakis winery

The integration of digital technologies in vineyard management offers substantial opportunities for enhancing sustainability, efficiency, and grape quality.

Evaluation of shelf life of white wines in aluminium bottle: a modelling approach

Aluminum is a particularly interesting material for packaging because it is environmentally sustainable, lighter than standard glass bottles, and protective against light radiation [1].

Postveraison shoot trimming in Tannat and Merlot: preliminary results on yield components, plant balance and berry composition

There is currently a trend towards the production of wines with low alcohol content. To achieve this, grapes with low sugar content must be used. There are techniques at the vineyard level that can delay ripening and avoid excessive sugar accumulation without, a priori, affecting the final polyphenol content. Postveraison shoot trimming (PVST) is experimentally evaluated for these purposes, but its impact under Uruguayan climatic conditions with high interannual variability is not known. The aim of this work is to assess the PVST in Tannat and Merlot cultivars and their impact on yield components, plant balance and berry primary composition. In this study, two commercial vineyards of 10 years old Tannat and Merlot (grafted on SO4) at Canelones Department were selected. During the 2020-201 growing season, grapevines were submitted to PVST when grapes reached 15º Brix. In a randomized block, trimmed (T) and control (C) plants were evaluated with three repetitions each cultivar. Evaluation of the evolution of primary berry composition during ripening, measurement of yield components and plant balance were performed. For both cultivars, PVST did not affect yield components. Merlot reached 5.4 kg per plant and Tannat 7.1 kg, with not statistical significance between treatments. However, statistical differences were observed in terms of plant balance. In Merlot Ravaz Index reached a difference of 5.3 (12.0 in T and 6.7 in C) meanwhile Tannat reached 3.5 of statistical difference (13.7 in T and 10.2 in C). The tendency to imbalance for the treated plants had an impact on the final grape composition. Merlot grapes showed statistical difference in final total acidity (0.3 g of difference between treatments) while treatments impact final sugar content on Tannat grapes (10.0 g of difference between treatments). Further studies are needed to assess the impact of different canopy management techniques in our conditions.

Analysis of climate spatio-temporal variability in the Conegliano-Valdobbiadene DOCG wine district

Local climate characterization is fundamental in terroir description, yet global change perspectives raise questions about its feasibility, since temporal stability cannot be no more assumed for the forthcoming years.

Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Riesling represents the most widely cultivated grape variety in Germany and is therefore of particular economic interest. During recent years an increase in the petrol-note as well as in undesirable bitter and adstringent notes has been reported. These changes are most likely linked to increasing temperature and sunlight exposure of grapes due to climate changes.
The “petrol note” is caused by the formation of the C13-norisoprenoid 1,1,6-trimethyl-1,2-dihydronaphthalin (TDN), which originates from acid-labile precursors formed by the carotenoid degradation in the grape.