terclim by ICS banner
IVES 9 IVES Conference Series 9 Raffinose: a sweet solution for grapevine drought tolerance

Raffinose: a sweet solution for grapevine drought tolerance

Abstract

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family. We analyzed the transcriptome data of these cultivars and constructed a gene co-expression network based on the reference genome, which revealed the involvement of the MYB transcription factor named ‘AQUILO’. To test the function of VviRAF2 and ‘AQUILO’ in water-stress tolerance, we engineered such genes via Agrobacterium tumefaciens using both, transgenic and cisgenic approach: one VviRAF2 under the control of the 35-s promoter, and another with the insertion of AQUILO controlled by its own promoter. During this study, we performed gene expression experiments on transformed lines to compare the DEGs in response to water-stress. Finally, we present the preliminary results related to stress response underlying the pathways of water stress tolerance.  

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Álvaro Vidal Valenzuela1,2,3,4*, José Tomás Matus2, David Navarro-Paya2,Felipe Gainza-Cortés3, Maria Stella Grando4, Olivier Zekri5, Pierre Videau5, Katerina Labonova5, Lorenza Dalla Costa1, Mickael Malnoy1

1 Research and Innovation centre, Fondazione Edmund Mach, Via Mach 1, 38098 San michelle all’adige(TN), Italy
2 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
3 Center for Research and Innovation (CII), Viña Concha y Toro, 3550000, Pencahue, Chile
4 Center Agriculture Food Environment (C3A), University of Trento, via E Mach 1, 38010 San Michele all’Adige, Italy
5 Mercier Novatech, Le Champ des Noëls, 85770 – Le gué de velluire, France

Contact the author*

Keywords

Raffinose, Metabolites, Drought, Abiotic stress, sugar

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The impact of selected odorant combinations in wine oxidative aroma and their interactive role on the olfactory perception

It is widely known the impact that oxidation has on wine sensory degradation and eventually, in the shortening of its longevity.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

Quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR in the study of deuterium distribution in intracellular water and fermentation products of grape carbohydrates using ethyl alcohol as an example

The paper presents results that develop the results of studies carried out in 2022-2023 under the OIV grant on the topic of distribution of deuterium (2H(D)) in the intracellular water of grapes and wines, taking into account the impact of natural, climatic and technogenic factors using quantitative nuclear magnetic resonance spectroscopy (qNMR).

Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Somatic embryogenesis (SE) has been used in a variety of biotechnology applications such as virus elimination, cryopreservation, induced mutagenesis and genetic transformation. The SE induction process may cause DNA alterations and ploidy changes, which may provide a source of genetic variability useful for the improvement of agronomic characteristics of plants. This research aims at investigating the spontaneous alterations of the genome in grapevine plants regenerated through SE. Regenerants obtained from different embryogenic events from three different grapevine genotypes (Catarratto, Frappato and Nero d’Avola) were analysed.

Les micro-zones et les technologies traditionnelles de la viniculture en Géorgie

La Géorgie est un pays d’une tradition très ancienne de viticulture et de viniculture. Là, dans les micro zones spécifiques, en précisant le lieu on produit de différents types du vin d’une