terclim by ICS banner
IVES 9 IVES Conference Series 9 Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

Abstract

This study focuses on investigating the effects of climate change on the plant physiology and berries of Vitis vinifera cv “Monastrell” in a commercial vineyard managed organically in Southeastern Spain (Jumilla, Murcia).  For this purpose, open top chambers and rainout shelters were employed to simulate warming (~2-7 ºC, W) and rainfall reduction (~30%, RR) respectively. Additionally, a combination of both treatments (W+RR) was employed. Vines without either top chambers or rainout shelters were considered as control (C). The experiment was established in February of 2023. Predawn leaf water potential (measured using a pressure chamber), stomatal conductance (assessed with a porometer at mid-morning) and leaf chlorophyll and flavonoid content (measured using the Dualex® leaf clip sensor) were analyzed at veraison (5 months after the installation of structures). At harvest, the yield and dehydration rate of grapes were determined. The results revealed severe water stress (< -0.8 MPa) in all treatments, with a significant reduction in stomatal conductance in leaves of vines under the W+RR treatment. Moreover, warming treatments (W and W+RR) led to a significant decrease in flavonoid content. At harvest, grapes from the warming treatments resulted in a higher dehydration rate, showing a significant decrease in cluster weight compared to C and RR treatments. In conclusion, during the first year, treatments involving temperature increases and water restriction had a similar effect on the stress water indicators used; however, warming treatments induced a different metabolic response, influencing flavonoids and berries.

Acknowledgments : Funded by PDI2021124382OB-I00 project of the State Research Agency (Ministry of Science and Innovation, Spain).

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

L. Martín1, M.V. Alarcón2, M.E. Valdés3, M.M. Alguacil4

Plant Protection. Instituto de Investigaciones Agrarias Finca La Orden-Valdesequera. CICYTEX, 06187 Guadajira (Spain)
2 Agronomy of woody and horticultural crops. Instituto de Investigaciones Agrarias Finca La Orden-Valdesequera, CICYTEX, 06187 Guadajira (Spain)
3 Food and Agriculture Technology Institute of Extremadura (CICYTEX_INTAEX). Adolfo Suárez s/n Avenue, Badajoz, 06071, (Spain)
4CSIC-Centro de Edafología y Biología Aplicada del Segura. Department of Soil and Water Conservation. P.O. Box 164, Campus de Espinardo 30100-Murcia (Spain)

Contact the author*

Keywords

Monastrell, open-top chambers, rainout shelters, organic farming

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of light exclusion on anthocyanin composition in ‘Cabernet sauvignon’

The aim of this study was to determine how artificial shading influenced berry development and anthocyanin accumulation in ‘Cabernet sauvignon’. Opaque polypropylene boxes were applied to grape bunches over three different developmental stages.

Correction de la teneur en alcool des vins par évaporation partielle sous vide en cours de fermentation alcoolique

Climate change has become a reality that is becoming more and more apparent every day, with changes in the physico-chemical composition of grapes and an increase in the alcohol content of finished wines. These higher alcoholic degrees are not without consequences for the success of alcoholic and malolactic fermentation. Correcting the alcohol content (-20% of the initial alcoholic strength) is also part of an approach designed to meet consumer expectations for healthier, lighter or lower-alcohol wines (9 to 13% vol.). Correcting the alcohol content of wines also rebalances the mouthfeel by reducing the alcohol’s burn.

Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Downy mildew, caused by Plasmopara viticola, is the most economically impactful disease affecting grapevines. This polycyclic pathogen triggers both primary and secondary infection cycles, resulting in significant yield losses when effective disease control measures are lacking. Over the winter, the pathogen survives by forming resting structures, the oospores, derived from sexual reproduction, which produce the inoculum for primary infections. To optimize grapevine downy mildew control and obtain the desired levels of production while minimizing chemical inputs, it is crucial to optimize the timeframe for fungicide application. Disease forecasting models are useful to identify the infection risk.

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection

From precursor identification to the study of the distribution of 3-methyl-2,4-nonanedione in red wines and spirits

Prematurely aged red wines are marked by intense prune and fig aromatic nuances that dominate the complex bouquet that can be achieved through bottle aging.