terclim by ICS banner
IVES 9 IVES Conference Series 9 Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

Abstract

This study focuses on investigating the effects of climate change on the plant physiology and berries of Vitis vinifera cv “Monastrell” in a commercial vineyard managed organically in Southeastern Spain (Jumilla, Murcia).  For this purpose, open top chambers and rainout shelters were employed to simulate warming (~2-7 ºC, W) and rainfall reduction (~30%, RR) respectively. Additionally, a combination of both treatments (W+RR) was employed. Vines without either top chambers or rainout shelters were considered as control (C). The experiment was established in February of 2023. Predawn leaf water potential (measured using a pressure chamber), stomatal conductance (assessed with a porometer at mid-morning) and leaf chlorophyll and flavonoid content (measured using the Dualex® leaf clip sensor) were analyzed at veraison (5 months after the installation of structures). At harvest, the yield and dehydration rate of grapes were determined. The results revealed severe water stress (< -0.8 MPa) in all treatments, with a significant reduction in stomatal conductance in leaves of vines under the W+RR treatment. Moreover, warming treatments (W and W+RR) led to a significant decrease in flavonoid content. At harvest, grapes from the warming treatments resulted in a higher dehydration rate, showing a significant decrease in cluster weight compared to C and RR treatments. In conclusion, during the first year, treatments involving temperature increases and water restriction had a similar effect on the stress water indicators used; however, warming treatments induced a different metabolic response, influencing flavonoids and berries.

Acknowledgments : Funded by PDI2021124382OB-I00 project of the State Research Agency (Ministry of Science and Innovation, Spain).

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

L. Martín1, M.V. Alarcón2, M.E. Valdés3, M.M. Alguacil4

Plant Protection. Instituto de Investigaciones Agrarias Finca La Orden-Valdesequera. CICYTEX, 06187 Guadajira (Spain)
2 Agronomy of woody and horticultural crops. Instituto de Investigaciones Agrarias Finca La Orden-Valdesequera, CICYTEX, 06187 Guadajira (Spain)
3 Food and Agriculture Technology Institute of Extremadura (CICYTEX_INTAEX). Adolfo Suárez s/n Avenue, Badajoz, 06071, (Spain)
4CSIC-Centro de Edafología y Biología Aplicada del Segura. Department of Soil and Water Conservation. P.O. Box 164, Campus de Espinardo 30100-Murcia (Spain)

Contact the author*

Keywords

Monastrell, open-top chambers, rainout shelters, organic farming

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Origin of unpleasant smelling sulphur compounds during wine fermentation

The wine sector is undergoing considerable transformation, particularly as a result of climate change and increasing consumer expectations for quality products, in a globalised and increasingly competitive market.

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Sustaining grape production under challenging climate change circumstances

Grapevines are an important economic crop grown in temperate climates of both hemispheres characterized by short‐term heat spells and heat waves

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

DNA-free genome editing confers disease resistance in grapevine varieties

The grapevine is facing significant challenges due to climate change, as rising temperatures impact its physiological traits and disrupt plant phenology.