terclim by ICS banner
IVES 9 IVES Conference Series 9 Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

Abstract

As the frequency and intensity of drought events increase, understanding the mechanisms of plant resilience to water deficit is crucial. To maintain an appropriate plant yield, a common practice is the application of high amounts of fertilizers with negative environmental impacts. The single and combined effect of water deficit and nutrient availability, namely nitrogen (N) and potassium (K), in Vitis Vinifera L. cv. Cabernet Sauvignon and Grenache was evaluated. Two-year-old grapevine plants grafted on SO4 rootstock were transferred in pots under semi-environmental conditions. During the growing season, plants were either maintained well-watered (100% ETc) or subjected to a controlled water deficit irrigation (33% ETc). Moreover, different N and K fertilization doses were applied: 100%N+100%K; 100%N+30%K; 30%N+100%K; and 30%N+30%K. Several morpho-physiological parameters were periodically evaluated, including plant growth rate, midday stem water potential, and gas exchange parameters. In addition, multi‑elemental analysis was conducted by collecting leaves at flowering, veraison, and maturity stage.

Early-season results showed significant effect of irrigation on stomatal conductance and transpiration rate, especially in Grenache. Multi-elemental data at flowering stage showed that plants mainly separated in response to irrigation treatment. Conversely, the physiological response and the nutrient composition at the maturity stage was strongly influenced by N fertilization.

The obtained results will improve the comprehension of the mechanisms involved in the signaling network of the interplay among water and nutrient acquisition.

PRIN 2022 PNRR: P20222XJKY; Agritech (PNRR MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/ 2022, CN00000022); PSD Artificial Intelligence 2020-25, University of Udine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Gabriella Vinci1*, Alberto Calderan1,2, Arianna Lodovici1, Giovanni Anedda1, Matteo Bortolussi1, Marianna Fasoli3, Paolo Sivilotti1, Laura Zanin1

1Department of Food, Environmental, and Animal Sciences, University of Udine, 33100 Udine, Italy
2Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
3Deparment of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

viticulture, grapevine, abiotic stresses, nitrogen, potassium

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Significance of factors making Riesling an iconic grape variety

Riesling is the iconic grape variety of Germany and accounts for 23% of the German viticulture acreage, which comprises 45% of the worldwide Riesling plantings.

Bio-modulating wine acidity: The role of non-Saccharomyces yeasts

In this video recording of the IVES science meeting 2021, Alice Maria Correia Vilela (University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about bio-modulating wine acidity: the role of non-Saccharomyces yeasts. This presentation is based on an original article accessible for free on IVES Technical Reviews.

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

New Insights into Wine Color Analysis: A Comparison of Analytical Methods and their Correlation with Sensory Perception

wo spectrophotometric methods are recommended by the Organisation Internationale de la vigne et du vin (OIV). The first is the method after Glories, were the absorbances at 420 nm, 520 nm and 620 nm are measured (OIV 2006a).