terclim by ICS banner
IVES 9 IVES Conference Series 9 Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

Abstract

As the frequency and intensity of drought events increase, understanding the mechanisms of plant resilience to water deficit is crucial. To maintain an appropriate plant yield, a common practice is the application of high amounts of fertilizers with negative environmental impacts. The single and combined effect of water deficit and nutrient availability, namely nitrogen (N) and potassium (K), in Vitis Vinifera L. cv. Cabernet Sauvignon and Grenache was evaluated. Two-year-old grapevine plants grafted on SO4 rootstock were transferred in pots under semi-environmental conditions. During the growing season, plants were either maintained well-watered (100% ETc) or subjected to a controlled water deficit irrigation (33% ETc). Moreover, different N and K fertilization doses were applied: 100%N+100%K; 100%N+30%K; 30%N+100%K; and 30%N+30%K. Several morpho-physiological parameters were periodically evaluated, including plant growth rate, midday stem water potential, and gas exchange parameters. In addition, multi‑elemental analysis was conducted by collecting leaves at flowering, veraison, and maturity stage.

Early-season results showed significant effect of irrigation on stomatal conductance and transpiration rate, especially in Grenache. Multi-elemental data at flowering stage showed that plants mainly separated in response to irrigation treatment. Conversely, the physiological response and the nutrient composition at the maturity stage was strongly influenced by N fertilization.

The obtained results will improve the comprehension of the mechanisms involved in the signaling network of the interplay among water and nutrient acquisition.

PRIN 2022 PNRR: P20222XJKY; Agritech (PNRR MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/ 2022, CN00000022); PSD Artificial Intelligence 2020-25, University of Udine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Gabriella Vinci1*, Alberto Calderan1,2, Arianna Lodovici1, Giovanni Anedda1, Matteo Bortolussi1, Marianna Fasoli3, Paolo Sivilotti1, Laura Zanin1

1Department of Food, Environmental, and Animal Sciences, University of Udine, 33100 Udine, Italy
2Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
3Deparment of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

viticulture, grapevine, abiotic stresses, nitrogen, potassium

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The temperature‐based grapevine sugar ripeness (GSR) model for adapting a wide range of Vitis vinifera L. cultivars in a changing climate

 Temperatures are increasing due to climate change leading to advances in grapevine phenology and sugar accumulation in grape berries.

Effect of vigour and number of clusters on eonological parameters and metabolic profile of Cabernet Sauvignon red wines

Vegetative growth and yield are reported to affect grape and wine quality. They can be controlled through different techniques linked to vine management. The objective of this research was to determine the effect of vine vigour and number of clusters per vine on physicochemical composition and phenolic profile of red wines. The experiment was carried out during two vegetative cycles, with cv. Cabernet Sauvignon grafted onto Paulsen 1103. Three vine vigour were defined, according to shoot weight at previous harvests, being low, medium and high. Five treatments of number of clusters were used for each vigour, with 15, 22, 29, 36, and 45 clusters per vine. Grapes from all treatments were harvested in the same day from Brix and total acidity criteria. Thirty days after bottling, classical analyzes and phenolic compounds were performed. As results, different responses were obtained from each vintage. In 2020, a dry season from veraison to harvest, grapes and wines obtained from low vigour treatment and 45 clusters per vine was the highest in sugar and alcohol content respectively, while grapes and wines from high vigour and 15 clusters presented the lowest sugar and alcohol content. Total anthocyanins were higher in treatment with low vigour and 15 clusters, while the lowest amounts were found in low vigour with 45 clusters, as well as medium and high vigour with 36 clusters per vine. Total tannins were higher in high vigour with 22 clusters and medium vigour with 29 clusters, while were lower in low vigour with 36 clusters. In 2021, a wet season at harvest, responses were different, and great variations were observed between treatments. As conclusions, yield and vine vigour had strong influence on grape and wine quality, promoting different enological potentials on which can be indicated/used for aging strategies of red and even rosé wines.

Identification of the agronomical and landscape potentialities in Côtes du Rhône area (France)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Viticulture and climate: from global to local

Aims: This review aims to (1) present the multiple interests of studying and depicting and climate spatial variability for vitivinicultural terroirs study; (2) explain the factors that affect climate spatial variability according to the spatial scale considered and (3) provide guidelines for climate zoning considering challenges linked to each methodology considered.

Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

The increasingly frequent heat waves during grape ripening pose challenges for high quality wine grape production. Defoliation is a common practice that can improve the control of diseases in bunches, but also it increases the exposure to sunlight. Grapes exposed to solar radiation reach temperatures over the optimum for berry development and maturation. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 using Manto negro wine grapes to study the effect of applied irrigation and different light exposure levels on grape quality. Two irrigation treatments were imposed based on the frequency and amount of water doses in a four-block experimental vineyard at Bodega Ribas (Mallorca). Three light exposure treatments were randomly applied in each irrigation plot. The light treatments included exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity was estimated every 2 weeks. Midday leaf water potential was measured weekly. Additionally, apparent electrical conductivity was measured between rows to estimate the soil water content variability. Light and temperature sensors were installed at the bunch level to quantify the differences in bunch temperature and light intensity among treatments. The effect of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH were analysed at 5 moments along grape ripening. During different heat waves, the natural shading technique decreased the maximum bunch temperature around 10 °C respect to the exposed bunches in both irrigation strategies. The combination of defoliation and shading techniques after softening decreased TSS at harvest and affected most of the quality parameters during the last stages of ripening, showing an interesting technique to delay ripening in warm viticulture areas.