terclim by ICS banner
IVES 9 IVES Conference Series 9 Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

Abstract

As the frequency and intensity of drought events increase, understanding the mechanisms of plant resilience to water deficit is crucial. To maintain an appropriate plant yield, a common practice is the application of high amounts of fertilizers with negative environmental impacts. The single and combined effect of water deficit and nutrient availability, namely nitrogen (N) and potassium (K), in Vitis Vinifera L. cv. Cabernet Sauvignon and Grenache was evaluated. Two-year-old grapevine plants grafted on SO4 rootstock were transferred in pots under semi-environmental conditions. During the growing season, plants were either maintained well-watered (100% ETc) or subjected to a controlled water deficit irrigation (33% ETc). Moreover, different N and K fertilization doses were applied: 100%N+100%K; 100%N+30%K; 30%N+100%K; and 30%N+30%K. Several morpho-physiological parameters were periodically evaluated, including plant growth rate, midday stem water potential, and gas exchange parameters. In addition, multi‑elemental analysis was conducted by collecting leaves at flowering, veraison, and maturity stage.

Early-season results showed significant effect of irrigation on stomatal conductance and transpiration rate, especially in Grenache. Multi-elemental data at flowering stage showed that plants mainly separated in response to irrigation treatment. Conversely, the physiological response and the nutrient composition at the maturity stage was strongly influenced by N fertilization.

The obtained results will improve the comprehension of the mechanisms involved in the signaling network of the interplay among water and nutrient acquisition.

PRIN 2022 PNRR: P20222XJKY; Agritech (PNRR MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/ 2022, CN00000022); PSD Artificial Intelligence 2020-25, University of Udine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Gabriella Vinci1*, Alberto Calderan1,2, Arianna Lodovici1, Giovanni Anedda1, Matteo Bortolussi1, Marianna Fasoli3, Paolo Sivilotti1, Laura Zanin1

1Department of Food, Environmental, and Animal Sciences, University of Udine, 33100 Udine, Italy
2Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
3Deparment of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

viticulture, grapevine, abiotic stresses, nitrogen, potassium

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Identification of compounds produced by reactions of flavonoids and acetaldehyde in wine

During aging, wine consumes small amounts of oxygen. This oxygen intake triggers a series of reactions that lead to flavonoid elongation, which is known to reduce bitterness and astringency while enhancing color stability.

L’étude “terroirs d’Anjou”: un exemple de caractérisation intégrée des terroirs viticoles, utilisable à l’échelle parcellaire

Natural factors of the production (“terroir” and vintage) are known as an important element for identifying wines by their genuine typicité and their authenticity. The program “Terroirs d’Anjou” (1994-1999) aims at bringing the necessary scientific basis for a rational and reasoned exploitation of the terroir.

Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Row orientation and canopy management are essential for high quality grapevine production. Microclimatic conditions of the leaves and fruits can be influenced by the canopy geometry. Remote sensing is a very promising tool to describe vegetative growth and physiological behavior of vineyards. However, the correlation between remotely sensed data and in situ field measurements has been described scarcely in the scientific literature so far. The aim of the study was to correlate remotely sensed data obtained with Unmanned Aerial Vehicle (UAV) with in situ field measurements to describe canopy structure.

An innovative 21st century frost alert system for an age-old viticulture challenge

Damage during the budbreak period due to spring season frosts remains one of the most significant weather-related challenges to viticulture around the world. For example, in 2021, €2bn of estimated damage was reported in france while >50% of vineyards were badly affected in the UK in 2017.

Application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines: biological acidification, prise de mousse, aroma profile. Two cases of study

In this video recording of the IVES science meeting 2025, Raffaele Guzzon (Fondazione Edmund Mach, Centro di Trasferimento Tecnologico, San Michele all’Adige (TN), Italy) speaks about the application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines (biological acidification, prise de mousse, aroma profile). This presentation is based on an original article accessible for free on OENO One.