terclim by ICS banner
IVES 9 IVES Conference Series 9 Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

Abstract

As the frequency and intensity of drought events increase, understanding the mechanisms of plant resilience to water deficit is crucial. To maintain an appropriate plant yield, a common practice is the application of high amounts of fertilizers with negative environmental impacts. The single and combined effect of water deficit and nutrient availability, namely nitrogen (N) and potassium (K), in Vitis Vinifera L. cv. Cabernet Sauvignon and Grenache was evaluated. Two-year-old grapevine plants grafted on SO4 rootstock were transferred in pots under semi-environmental conditions. During the growing season, plants were either maintained well-watered (100% ETc) or subjected to a controlled water deficit irrigation (33% ETc). Moreover, different N and K fertilization doses were applied: 100%N+100%K; 100%N+30%K; 30%N+100%K; and 30%N+30%K. Several morpho-physiological parameters were periodically evaluated, including plant growth rate, midday stem water potential, and gas exchange parameters. In addition, multi‑elemental analysis was conducted by collecting leaves at flowering, veraison, and maturity stage.

Early-season results showed significant effect of irrigation on stomatal conductance and transpiration rate, especially in Grenache. Multi-elemental data at flowering stage showed that plants mainly separated in response to irrigation treatment. Conversely, the physiological response and the nutrient composition at the maturity stage was strongly influenced by N fertilization.

The obtained results will improve the comprehension of the mechanisms involved in the signaling network of the interplay among water and nutrient acquisition.

PRIN 2022 PNRR: P20222XJKY; Agritech (PNRR MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/ 2022, CN00000022); PSD Artificial Intelligence 2020-25, University of Udine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Gabriella Vinci1*, Alberto Calderan1,2, Arianna Lodovici1, Giovanni Anedda1, Matteo Bortolussi1, Marianna Fasoli3, Paolo Sivilotti1, Laura Zanin1

1Department of Food, Environmental, and Animal Sciences, University of Udine, 33100 Udine, Italy
2Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
3Deparment of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

viticulture, grapevine, abiotic stresses, nitrogen, potassium

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Different from wild species in arid and semiarid conditions, cultivated species are very sensitive to drought and, beyond some stress thresholds, food production is not possible

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

Over the years, microoxygenation (MOX) has become a popular vinification technique to improve wine sensory qualities. However, among the impacting factors reported

Vitiforestry as innovative heritage. Adaptive conservation of historical wine-growing landscapes as response to XXI century’s challenges.

Traditional agricultural and agro-pastoral systems (prior to industrial revolution) often have the characteristic of being multiple systems, in which multiple crops are hosted simultaneously on the same plot. currently research suggests to study more in depth the potential of multiple agricultural systems in order to detect those characteristics of multiple agrarian systems that could allow modern viticulture to adapt to the challenges posed by climate change: rising temperatures with impacts on the phenological cycle of the vine, resurgence of plant deseases, extreme soil washout phenomena and hail storms, among others.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.