terclim by ICS banner
IVES 9 IVES Conference Series 9 Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

Abstract

As the frequency and intensity of drought events increase, understanding the mechanisms of plant resilience to water deficit is crucial. To maintain an appropriate plant yield, a common practice is the application of high amounts of fertilizers with negative environmental impacts. The single and combined effect of water deficit and nutrient availability, namely nitrogen (N) and potassium (K), in Vitis Vinifera L. cv. Cabernet Sauvignon and Grenache was evaluated. Two-year-old grapevine plants grafted on SO4 rootstock were transferred in pots under semi-environmental conditions. During the growing season, plants were either maintained well-watered (100% ETc) or subjected to a controlled water deficit irrigation (33% ETc). Moreover, different N and K fertilization doses were applied: 100%N+100%K; 100%N+30%K; 30%N+100%K; and 30%N+30%K. Several morpho-physiological parameters were periodically evaluated, including plant growth rate, midday stem water potential, and gas exchange parameters. In addition, multi‑elemental analysis was conducted by collecting leaves at flowering, veraison, and maturity stage.

Early-season results showed significant effect of irrigation on stomatal conductance and transpiration rate, especially in Grenache. Multi-elemental data at flowering stage showed that plants mainly separated in response to irrigation treatment. Conversely, the physiological response and the nutrient composition at the maturity stage was strongly influenced by N fertilization.

The obtained results will improve the comprehension of the mechanisms involved in the signaling network of the interplay among water and nutrient acquisition.

PRIN 2022 PNRR: P20222XJKY; Agritech (PNRR MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/ 2022, CN00000022); PSD Artificial Intelligence 2020-25, University of Udine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Gabriella Vinci1*, Alberto Calderan1,2, Arianna Lodovici1, Giovanni Anedda1, Matteo Bortolussi1, Marianna Fasoli3, Paolo Sivilotti1, Laura Zanin1

1Department of Food, Environmental, and Animal Sciences, University of Udine, 33100 Udine, Italy
2Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
3Deparment of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

viticulture, grapevine, abiotic stresses, nitrogen, potassium

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

La pianificazione del paesaggio agrario vitivinicolo del basso Monferrato

Monferrato is a sub region of Piedmont featuring an endless series of hills which have been moulded through the centuries by laborious farming. Vineyards have always been the protagonists of Monferrato landscape. Asti vineyards have been well-known since Roman times and Pliny the Elder mentions them.

Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Climate change is increasing the frequency of water deficit in many grape-growing regions. Grapevine varieties differ in their stomatal behavior during water deficit, and their ability to regulate water potential under dry soil conditions is commonly differentiated using the concept of isohydricity. It remains unclear whether stomatal behavior, water potential regulation, and the resulting degree of isohydricity has a relationship with changes to fruit growth during water deficit. This study was conducted on four varieties (`Cabernet Franc`, `Semillon`, `Grenache`, and `Riesling`) subjected to both short-term, severe water deficit and long-term, moderate water deficit applied at both pre- and post-veraison.

Modeling the suitability of Pinot Noir in Oregon’s Willamette Valley in a changing climate

Air temperature is the key driver of grapevine phenology and a significant environmental factor impacting yield and quality for a winegrape growing region. In this study the optimal downscaled CMIP5 ensemble for computing thegrowing season average temperature (GST) viticulture climate classification index was determined to spatially compute on a decadal basis predictions of the GST climate index and the grapevine sugar ripeness (GSR) model for Pinot Noir throughout the Willamette Valley (WV) American Viticultural Area (AVA). Forecasts for average temperature and a 220 g/L target sugar concentration level were computed using daily Localized Constructed Analogs (LOCA) downscaled CMIP5 historic and Representative Concentration Pathways (RCP) future climate projections of minimum and maximum daily temperature. We explore spatiotemporal trends of the GST climate classification index and Pinot Noir specific applications of the GSR phenology model for the WV AVA. Spatiotemporal computations of the GST climate index and Pinot Noir specific applications of the GSR model enable the opportunity to explore relationships between their computed values with one intent being to provide updated GST ranges that better align with current temperature-based modeling understanding of Pinot Noir grapevine phenology and the viticultural application of LOCA CMIP5 climate projections for the WV AVA. The Pinot Noir specific applications of the GSR model or the GST index with updated bounds indicate that the percent of the WV AVA area suitable for Pinot Noir production is currently at or near its peak value in the upper 80s to lower 90s of this century.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements.

Digital PCR: a tool for the early detection of brettanomyces in wine

Brettanomyces bruxellensis is found in various ecological niches, but particularly in fermentative processes: beer, kombucha, cider and wine. In the oenological sector, this yeast is undesirable, as it can produce ethyl phenols, thus altering wine quality. These compounds are characterized by stable or horse-sweat aromas, unpleasant for consumers.