terclim by ICS banner
IVES 9 IVES Conference Series 9 Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

Abstract

The main challenge of regulated deficit irrigation (RDI) research is to isolate the factors that come with RDI, the direct effect of plant water status from the indirect ones like increased radiation and temperature changes on the cluster zone. This study aims to isolate the effects of vine water status from the effects of increased radiation on the phenolic composition of grapes subjected to RDI.

A three-year study on an RDI experiment where radiation was controlled was implemented in a commercial vineyard of Cabernet Sauvignon in Chile. Four RDI treatments based on partial evapotranspiration (ET) irrigation were established. Irrigation treatments were 100% ET, 70% ET, 50-100% ET (50% ET before veraison and 100% ET afterward), and 35-100% ET (35% ET before veraison and 100% ET afterward). Radiation in the cluster zone was measured on a weekly basis and shading nets were installed in part of the trial to reduce radiation as soon as the RDI treatment started to increase it. Also, leaf removal was applied to the control treatment to increase radiation at the same levels as RDI treatments. Anthocyanins, Flavan-3-ols, and Flavonols were measured at harvest.

Findings reveal that increased radiation on the control due to leaf removal does not reduce the concentration of flavan-3-ols and the water deficit effect is maintained in shaded vines. Regarding flavonols all of them increased due to radiation in the leaf removal control, some of them maintained the effect RDI in shaded vines like myricetin but others lost their effect like quercetin.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Sebastián Vargas1*, Álvaro González1, Felipe Laurie2, Samuel Ortega 3

1 Centro de Investigación e Innovación de Viña Concha y Toro, Ruta K-650 km 10 Pencahue, Chile
2 Facultad de Ciencias Agrarias, Universidad de Talca, Campus Lircay, Talca, Chile
3 Centro de Investigación y Transferencia en Riego y Agroclimatología (CITRA), Universidad de Talca, Campus Lircay, 346000 Talca, Chile

Contact the author*

Keywords

deficit irrigation, radiation, phenolics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.

The impact of decadal cold waves over Europe on future viticultural practices

A crucial issue associated with the long-term impact of climate change in viticulture concerns the capacity of resilience of the typical varieties currently cultivated in traditional areas. Indeed, regions that are currently characterized by optimal climatic conditions can cease to be so in the future. At the same time, new premium wine production regions may arise north of 50oN. Both these threats and opportunities are based on the assessment of a very likely gradual temperature increase along the 21st century, resulting from the ensemble mean of the state-of-the-art climate projections. Such an assessment is orienting decision-makers and stakeholders to rethink the grapevine cultivation zoning, prefiguring, for each variety, a shift at higher latitudes and/or at higher altitudes areas.

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

Wine industry, digital transformation, and sustainability: a systematic literature 

This paper aims to (i) identify the state of the art regarding digital transformation in the transition to sustainability in the wine industry, (ii) analyze the adoption of digital technologies at different stages of the winemaking process and their contribution to the triple bottom line of sustainability, and (iii) present a research agenda that facilitates the development of the field, providing contributions to both literature and managerial practice.