terclim by ICS banner
IVES 9 IVES Conference Series 9 Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

Abstract

The main challenge of regulated deficit irrigation (RDI) research is to isolate the factors that come with RDI, the direct effect of plant water status from the indirect ones like increased radiation and temperature changes on the cluster zone. This study aims to isolate the effects of vine water status from the effects of increased radiation on the phenolic composition of grapes subjected to RDI.

A three-year study on an RDI experiment where radiation was controlled was implemented in a commercial vineyard of Cabernet Sauvignon in Chile. Four RDI treatments based on partial evapotranspiration (ET) irrigation were established. Irrigation treatments were 100% ET, 70% ET, 50-100% ET (50% ET before veraison and 100% ET afterward), and 35-100% ET (35% ET before veraison and 100% ET afterward). Radiation in the cluster zone was measured on a weekly basis and shading nets were installed in part of the trial to reduce radiation as soon as the RDI treatment started to increase it. Also, leaf removal was applied to the control treatment to increase radiation at the same levels as RDI treatments. Anthocyanins, Flavan-3-ols, and Flavonols were measured at harvest.

Findings reveal that increased radiation on the control due to leaf removal does not reduce the concentration of flavan-3-ols and the water deficit effect is maintained in shaded vines. Regarding flavonols all of them increased due to radiation in the leaf removal control, some of them maintained the effect RDI in shaded vines like myricetin but others lost their effect like quercetin.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Sebastián Vargas1*, Álvaro González1, Felipe Laurie2, Samuel Ortega 3

1 Centro de Investigación e Innovación de Viña Concha y Toro, Ruta K-650 km 10 Pencahue, Chile
2 Facultad de Ciencias Agrarias, Universidad de Talca, Campus Lircay, Talca, Chile
3 Centro de Investigación y Transferencia en Riego y Agroclimatología (CITRA), Universidad de Talca, Campus Lircay, 346000 Talca, Chile

Contact the author*

Keywords

deficit irrigation, radiation, phenolics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.

Arinto clones tolerant to climate change: in depth transcriptomic study of tolerant and sensitive genotypes

Drought and heat waves deriving from climate change have been affecting grapevine plants and altering wine characteristics in the past years, and effects are expected to get worst. Innovative approaches to address this problem have been undertaken in several varieties, that consist in exploring intravarietal variability to identify genotypes that are tolerant to abiotic stress. Such is the case of the variety Arinto, where an experimental population of 165 clones installed according to a resolvable row-column design with 6 replicates, was scanned for several parameters, including surface leaf temperature (SLT). Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability.

Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Rosé is leading the fastest growth wine category which hit a 40% increase since 2002. France accounts for over a third (34%) of global consumption followed by the US

The impact of delayed grapevine budbreak on lemberger wine sensory compounds under variable weather conditions

Spring freeze events threaten grape production globally. As grape buds emerge from dormancy in spring, freezing temperatures have the potential to damage green tissues, decreasing yield potential and compromising fruit quality by harvest.

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).