terclim by ICS banner
IVES 9 IVES Conference Series 9 Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Abstract

Grapevine powdery mildew resistance is a key target for grape breeders and grape growers worldwide. The driver of the USDA-NIFA-SCRI VitisGen3 project is completing the pipeline from germplasm identification to QTL to candidate gene characterization to new cultivars to vineyards to consumers. This is a common thread across such projects internationally. We will discuss how our objectives and approaches leverage big data to advance this initiative, starting with genomics and computer vision phenotyping for gene discovery and genetic improvement. To manage and maintain resistances for long-term sustainability, growers will be trained through our nation-wide extension and outreach plan. Ultimately, consumers drive adoption of new varieties, and our socioeconomic research using eye-tracking will be briefly described. Across this multi-disciplinary research effort, big data presents opportunities, challenges, and lessons.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Lance Cadle-Davidson1,2*, Matt Clark3, Dario Cantu4,5, Chengyan Yue3,6, Kaitlin Gold2, Yu Jiang2, Qi Sun7, Kate Fessler3

1 USDA-ARS Grape Genetics Research Unit, Geneva, NY, USA
2 School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, USA
3 Department of Horticultural Science, Univ. of Minnesota, Saint Paul, MN, USA
4 Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
5 Genome Center, University of California Davis, Davis, CA, USA
6 Department of Applied Economics, Univ. of Minnesota, Saint Paul, MN, USA
7 BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA

Contact the author*

Keywords

Disease resistance, Grape breeding, Genomics, Computer vision, Consumer behavior

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Description of the relationship between trunk disease expression and meteorological conditions, irrigations and physiological response in Chardonnay grapevines

In this audio recording of the IVES science meeting 2022, Florence Fontaine (Université de Reims Champagne Ardenne) speaks about grapevine trunk disease. This presentation is based on an original article accessible for free on OENO One.

The myth of the universal rootstock revisited: assessment of the importance of interactions between scion and rootstock

Aim‐ Rootstocks provide protection against soil borne pests and are a powerful tool to manipulate growth, fruit composition and wine quality attributes

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

CIEDE2000 colour difference value as a parameter for tracing the ageing process on wood aged spirits

It is quite common nowadays to carry out analyses which allow to control the ageing of spirits that are aged in wood casks. Many control parameters have been previously studied, such as the concentration of different phenolic compounds or the Total Polyphenol Index, in order to better understand the ageing process of wood aged spirits. On the other hand, it is frequent to analyse as a physical parameter the colour of those spirit samples, by stating them as an array of three coordinates from various colour spaces as CIE L*a*b* or CIE L*C*H*.

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.