terclim by ICS banner
IVES 9 IVES Conference Series 9 Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Abstract

Grapevine powdery mildew resistance is a key target for grape breeders and grape growers worldwide. The driver of the USDA-NIFA-SCRI VitisGen3 project is completing the pipeline from germplasm identification to QTL to candidate gene characterization to new cultivars to vineyards to consumers. This is a common thread across such projects internationally. We will discuss how our objectives and approaches leverage big data to advance this initiative, starting with genomics and computer vision phenotyping for gene discovery and genetic improvement. To manage and maintain resistances for long-term sustainability, growers will be trained through our nation-wide extension and outreach plan. Ultimately, consumers drive adoption of new varieties, and our socioeconomic research using eye-tracking will be briefly described. Across this multi-disciplinary research effort, big data presents opportunities, challenges, and lessons.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Lance Cadle-Davidson1,2*, Matt Clark3, Dario Cantu4,5, Chengyan Yue3,6, Kaitlin Gold2, Yu Jiang2, Qi Sun7, Kate Fessler3

1 USDA-ARS Grape Genetics Research Unit, Geneva, NY, USA
2 School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, USA
3 Department of Horticultural Science, Univ. of Minnesota, Saint Paul, MN, USA
4 Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
5 Genome Center, University of California Davis, Davis, CA, USA
6 Department of Applied Economics, Univ. of Minnesota, Saint Paul, MN, USA
7 BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA

Contact the author*

Keywords

Disease resistance, Grape breeding, Genomics, Computer vision, Consumer behavior

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

Soave beyond the zonation

In a previous zoning program (1998-2002), climatic and pedological factors were able to distinguish 14 terroir within the Soave DOC area where wine characteristics are well recognizable. Nevertheless, in the past vinegrowers identified several vineyards where a better quality of the grapes and wines could be obtained. So, « beyond the zonation » will aim to suggest a new methodology to characterise the Cru, starting with 15 vineyards that were selected in the Soave Classico DOC area. In the year 2005, a meteorological station was positioned in each vineyard and temperature data were collected; because of the limited area of investigation, only 3 rain sensors were set up.

Le zonage viticole: instrument pour la récuperation d’un ancien cépage des collines de Conegliano (Verdiso – V. vinifera)

Dans le contexte viticole actuel, la prise de conscience que chaque cépage ne trouve son expression qualitative maximale que dans certains terroirs bien définis

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Significant wine aroma can be formed from non-volatile precursors that are linked to sugars, including but not limited to grape-derived monoterpene and C13-norisoprenoid glycosides.