terclim by ICS banner
IVES 9 IVES Conference Series 9 Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Abstract

Grapevine powdery mildew resistance is a key target for grape breeders and grape growers worldwide. The driver of the USDA-NIFA-SCRI VitisGen3 project is completing the pipeline from germplasm identification to QTL to candidate gene characterization to new cultivars to vineyards to consumers. This is a common thread across such projects internationally. We will discuss how our objectives and approaches leverage big data to advance this initiative, starting with genomics and computer vision phenotyping for gene discovery and genetic improvement. To manage and maintain resistances for long-term sustainability, growers will be trained through our nation-wide extension and outreach plan. Ultimately, consumers drive adoption of new varieties, and our socioeconomic research using eye-tracking will be briefly described. Across this multi-disciplinary research effort, big data presents opportunities, challenges, and lessons.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Lance Cadle-Davidson1,2*, Matt Clark3, Dario Cantu4,5, Chengyan Yue3,6, Kaitlin Gold2, Yu Jiang2, Qi Sun7, Kate Fessler3

1 USDA-ARS Grape Genetics Research Unit, Geneva, NY, USA
2 School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, USA
3 Department of Horticultural Science, Univ. of Minnesota, Saint Paul, MN, USA
4 Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
5 Genome Center, University of California Davis, Davis, CA, USA
6 Department of Applied Economics, Univ. of Minnesota, Saint Paul, MN, USA
7 BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA

Contact the author*

Keywords

Disease resistance, Grape breeding, Genomics, Computer vision, Consumer behavior

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Projected changes of grapevine phenology in Belgian and South African vineyards under climate change scenarios

The concept of ‘terroir’ describes the interplay of the environmental factors that affect the grapevine. This includes but is not limited to climate, soil composition, vineyard management, topography, and geology.

Complementarity of measurements of electric resistivity of soils and ΔC13 of must in studies and valorization of wine terroirs

The correlations between vine water deficit cumulated over the ripening period of grapes, assessed by ΔC13 in must sugar, and the main analytic variables of grapes are significant. As a result ΔC13 is a useful tool in zoning homogeneous areas according to their technological qualities when harvesting.

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins.

Shift of Nitrogen Resources by biotic interaction in grapevine

Grape phylloxera (Daktulosphaira vitifoliae Fitch), a monophagous pest of the grapevine, induces nodosities on the roots through its sap-sucking activity.