terclim by ICS banner
IVES 9 IVES Conference Series 9 Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Abstract

Grapevine powdery mildew resistance is a key target for grape breeders and grape growers worldwide. The driver of the USDA-NIFA-SCRI VitisGen3 project is completing the pipeline from germplasm identification to QTL to candidate gene characterization to new cultivars to vineyards to consumers. This is a common thread across such projects internationally. We will discuss how our objectives and approaches leverage big data to advance this initiative, starting with genomics and computer vision phenotyping for gene discovery and genetic improvement. To manage and maintain resistances for long-term sustainability, growers will be trained through our nation-wide extension and outreach plan. Ultimately, consumers drive adoption of new varieties, and our socioeconomic research using eye-tracking will be briefly described. Across this multi-disciplinary research effort, big data presents opportunities, challenges, and lessons.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Lance Cadle-Davidson1,2*, Matt Clark3, Dario Cantu4,5, Chengyan Yue3,6, Kaitlin Gold2, Yu Jiang2, Qi Sun7, Kate Fessler3

1 USDA-ARS Grape Genetics Research Unit, Geneva, NY, USA
2 School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, USA
3 Department of Horticultural Science, Univ. of Minnesota, Saint Paul, MN, USA
4 Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
5 Genome Center, University of California Davis, Davis, CA, USA
6 Department of Applied Economics, Univ. of Minnesota, Saint Paul, MN, USA
7 BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA

Contact the author*

Keywords

Disease resistance, Grape breeding, Genomics, Computer vision, Consumer behavior

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence des facteurs naturels du terroir sur la maturation du raisin en Alsace

A study of the influence of environmental factors on the ripening of grapes under the conditions of Alsace is carried out. Emphasis is placed on the analysis of the mesoclimate and pedoclimate. The experiment is conducted on a network of plots of gewurztraminer grafted on SO4. The production conditions are standardized throughout the device.

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.

Climats: a model of terroir-based winegrowing recognized by UNESCO

In Burgundy, a climat has nothing to do with the weather but accurately designates a named vine plot, often centuries-old, which produces a singular wine. This wine is the combination of history, the natural environment (relief, type of soil, exposure to the sun), a grape variety and know-how going back thousands of years. The grapes of each climat are harvested separately and the wine is made from a single grape variety and has a unique name featured on the bottle. Romanée conti, clos de vougeot, montrachet, musigny, corton…

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).