terclim by ICS banner
IVES 9 IVES Conference Series 9 Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Abstract

Grapevine powdery mildew resistance is a key target for grape breeders and grape growers worldwide. The driver of the USDA-NIFA-SCRI VitisGen3 project is completing the pipeline from germplasm identification to QTL to candidate gene characterization to new cultivars to vineyards to consumers. This is a common thread across such projects internationally. We will discuss how our objectives and approaches leverage big data to advance this initiative, starting with genomics and computer vision phenotyping for gene discovery and genetic improvement. To manage and maintain resistances for long-term sustainability, growers will be trained through our nation-wide extension and outreach plan. Ultimately, consumers drive adoption of new varieties, and our socioeconomic research using eye-tracking will be briefly described. Across this multi-disciplinary research effort, big data presents opportunities, challenges, and lessons.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Lance Cadle-Davidson1,2*, Matt Clark3, Dario Cantu4,5, Chengyan Yue3,6, Kaitlin Gold2, Yu Jiang2, Qi Sun7, Kate Fessler3

1 USDA-ARS Grape Genetics Research Unit, Geneva, NY, USA
2 School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, USA
3 Department of Horticultural Science, Univ. of Minnesota, Saint Paul, MN, USA
4 Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
5 Genome Center, University of California Davis, Davis, CA, USA
6 Department of Applied Economics, Univ. of Minnesota, Saint Paul, MN, USA
7 BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA

Contact the author*

Keywords

Disease resistance, Grape breeding, Genomics, Computer vision, Consumer behavior

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Importanza del monitoraggio micro-meteorologico nella caratterizzazione del terroir

Le variabili meteorologiche e micro-meteorologiche ricoprono un importante ruolo sulla risposta vegeto-produttiva della vite e di conseguenza sulla qualità delle produzioni. Utilizzando una rete wireless di sensori sono stati monitorati i parametri meteorologici e micro-meteorologici di 4 vigneti del territorio toscano e in differenti condizioni di gestione agronomica.

Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

The mapping of spatial variability in vineyards offers the potential to implement zonal management strategies with the aim to optimize economic benefits and increase sustainability by managing natural resources, such as water used for irrigation, more optimally. This study characterized the (natural) variability in plant water status in a commercial Cabernet Sauvignon block, using remote sensing techniques, and identified the impact of this variability on the yield, and juice and wine composition. From the field data collected over two growing seasons, we demonstrated that remote sensing techniques are a practical and powerful tool for mapping spatial variability within vineyard blocks.

Integrated sustainability assessment in viticulture: An indicator-based approach applied to organic vineyards

Over the past two decades, sustainable vineyard management practices have become increasingly important as the wine industry is facing critical challenges, including climate change, biodiversity loss, and soil degradation.

The use of remote sensing for intra-block vineyard management

L’unité de gestion technique d’un vignoble est aujourd’hui la parcelle. Néanmoins, au sein d’une même parcelle, la variabilité de l’expression végétative et de la constitution des raisins à maturité, peut être grande, en particulier à cause d’une hétérogénéité du sol.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.