terclim by ICS banner
IVES 9 IVES Conference Series 9 The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Abstract

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘CandidatusPhytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci.22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity. Phosphoglucoisomerase converse glucose-1-phosphate to glucose-6-phosphate, which can be used as a substrate for starch biosynthesis. Besides, phosphoglucomutase activity was induced also in Nicotiana benthamiana leaves transiently transformed with the construct of putative effector PoStoSP28, previously annotated as an antigenic membrane protein StAMP related to interaction of phytoplasma with its insect vector. Using a pull-down assay and in planta co-IP assay, we confirmed that PoStoSP28 interacts with both grapevine phosphoglucomutases. In transiently transformed N. benthamiana leaves, PoStoSP28 was localized in the nucleus and cytosol and accompanied by a distinct border at the periphery or just outside the nucleus and in the thread-like structures spanning the cells. Upon closer inspection, some autophagosome-like structures were found in N. benthamiana cells expressing the PoStoSP28 effector. Moreover, PoStoSP28 was not only localized in the autophagosome but also increased the occurrence of autophagosomes (Dermastia et al., 2023, Front. Plant Sci. 14: 1232367). Therefore, the results suggest that PoStoSP28 plays a role in the pathogenicity of phytoplasma in grapevine by interacting with grapevine phosphoglucomutase enzymes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Maruša Pompe Novak1,2*, Rebeka Strah1,3, Špela Tomaž1,3, Tjaša Lukan1, Anna Coll1, Maja Zagorščak1, Kristina Gruden1, Günter Brader4, Marina Dermastia1

1 Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
2 Faculty of Viticulture and Enology, University of Nova Gorica, Vipava, Slovenia
3 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
4 Bioresources Unit, Health & Environment Department, Austrian Institute of Technology, Tulln, Austria

Contact the author*

Keywords

grapevine, Candidatus Phytoplasma solani, effector, StAMP, phosphoglucomutase

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Direct-injection HPLC for simultaneous determination of individual and total polyphenols in red wines: validation of the method

Polyphenols are very important compounds of red wines, serving as essential bioactive components and playing an important role in sensory properties. The determination of individual phenolic compounds in red wine is commonly performed by HPLC analysis, while the total polyphenols are quantified by spectrophotometric methods, usually by the method of absorbance at 280 nm (index of ribéreau-gayon) or the method of index of folin-ciocalteu. In this work, we pioneeringly proposed a new and fast method for simultaneous determination of individual and total polyphenols in red wines by direct-injection HPLC without sample preparation.

Use of multispectral satellite for monitoring vine water status in mediterranean areas

The development of new generations of multispectral satellites such as Sentinel-2 opens possibilities as to vine water status assessment (Cohen et al., 2019). Based on a three years field campaign, a model of Stem Water Potential (SWP) estimation on vine using four satellite bands in Red, Red-Edge, NIR and SWIR domains was developed (Laroche-Pinel et al., 2021). The model relies on SWP field measures done using a pressure chamber (Scholander et al., 1965), which is a common, robust and precise method to assess vine water status (Acevedo-Opazo et al., 2008). The model was mainly developed from from SWP measures on Syrah N (Laroche Pinel E., 2021).

A large scale monitoring was organized in different vineyards in the Mediterranean region in 2021. 10 varieties amongst the most represented in this area were monitored (Cabernet sauvignon N, Chardonnay B, Cinsault N, Grenache N, Merlot N, Mourvèdre N, Sauvignon B, Syrah N, Vermentino B, Viognier B). The model was used to produce water status maps from Sentinel-2 images, starting from the beginning of June (fruit set) up to September (harvest). The average estimated SWP for each vine was compared to actual field SWP measures done by wine growers or technicians during usual monitoring of irrigation programs. The correlations between mean estimated SWP and mean measured SWP were at the same level than expected by the model. (Laroche Pinel, 2021) The general SWP kinetics were comparable. The estimated SWP would have led to same irrigation decisions concerning the date of first irrigation in comparison with measured SWP.

Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., Guillaume, S. (2008). Is it possible to assess the spatial variability of vine water status? OENO One, 42(4), 203.
Cohen, Y., Gogumalla, P., Bahat, I., Netzer, Y., Ben-Gal, A., Lenski, I., … Helman, D. (2019). Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision agriculture ’19, The Netherlands: Wageningen Academic Publishers, pp. 445–451.
Laroche-Pinel, E., Duthoit, S., Albughdadi, M., Costard, A. D., Rousseau, J., Chéret, V., & Clenet, H. (2021). Towards vine water status monitoring on a large scale using sentinel-2 images. remote sensing, 13(9), 1837.
Laroche-Pinel,E. (2021). Suivi du statut hydrique de la vigne par télédétection hyper et multispectrale. Thèse INP Toulouse, France.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., & Hammel, H.T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.

Mapping aromatic profiles of Chardonnay and Sangiovese wines in grafting combination with new rootstocks

Rootstocks play a key role in the adaptation of grapevine to environmental conditions, affecting phenology, vigour, yield and grape quality.

Impact of canopy management on thiol precursors in white grapes: a six-year field study

The mechanisms behind thiol precursor accumulation in grapes remain incompletely understood, nor are the ways in which they can be improved by agronomic practices. A six-year field trial studied the physiological response of the Swiss white cultivar Vitis vinifera Arvine, rich in varietal thiols and precursors, to canopy management, i.e. leaf removal and canopy height.. Five treatments were set up in a randomized block design to assess the impacts of 1) pre-flowering LR (i.e. pre-flowering or full-flowering stages) and 2) compensating for the leaf area removed in the cluster zone by increasing the trimming height (i.e. 100 or 150 cm canopy height), compared with a non-defoliated control treatment.
Intensive pre-flowering LR severely reduced yield potential (–47% on average) and reduced the concentration of 3-mercaptohexanol precursors (P-3MH) in the must (–21%; p-value < 0.10).