terclim by ICS banner
IVES 9 IVES Conference Series 9 The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Abstract

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘CandidatusPhytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci.22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity. Phosphoglucoisomerase converse glucose-1-phosphate to glucose-6-phosphate, which can be used as a substrate for starch biosynthesis. Besides, phosphoglucomutase activity was induced also in Nicotiana benthamiana leaves transiently transformed with the construct of putative effector PoStoSP28, previously annotated as an antigenic membrane protein StAMP related to interaction of phytoplasma with its insect vector. Using a pull-down assay and in planta co-IP assay, we confirmed that PoStoSP28 interacts with both grapevine phosphoglucomutases. In transiently transformed N. benthamiana leaves, PoStoSP28 was localized in the nucleus and cytosol and accompanied by a distinct border at the periphery or just outside the nucleus and in the thread-like structures spanning the cells. Upon closer inspection, some autophagosome-like structures were found in N. benthamiana cells expressing the PoStoSP28 effector. Moreover, PoStoSP28 was not only localized in the autophagosome but also increased the occurrence of autophagosomes (Dermastia et al., 2023, Front. Plant Sci. 14: 1232367). Therefore, the results suggest that PoStoSP28 plays a role in the pathogenicity of phytoplasma in grapevine by interacting with grapevine phosphoglucomutase enzymes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Maruša Pompe Novak1,2*, Rebeka Strah1,3, Špela Tomaž1,3, Tjaša Lukan1, Anna Coll1, Maja Zagorščak1, Kristina Gruden1, Günter Brader4, Marina Dermastia1

1 Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
2 Faculty of Viticulture and Enology, University of Nova Gorica, Vipava, Slovenia
3 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
4 Bioresources Unit, Health & Environment Department, Austrian Institute of Technology, Tulln, Austria

Contact the author*

Keywords

grapevine, Candidatus Phytoplasma solani, effector, StAMP, phosphoglucomutase

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The wine: a never-ending source of H2S and methanethiol

Volatile sulfur compounds (VSCs), mainly hydrogen sulfide and methanethiol (H2S and MeSH), are the responsible for reductive off-odor in wine.

Underpinning terroir with data: rethinking the zoning paradigm

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used. Likewise, the chemical and sensory analysis of wines draws on multivariate statistics; the efficient winery intake of grapes, subsequent production of wines and their delivery to markets relies on logistics; whilst the sales and marketing of wines is increasingly driven by artificial intelligence linked to the recorded purchasing behaviour of consumers. In brief, there is data everywhere!

Opinions will vary on whether these developments are a good thing. Those concerned with the ‘mystique’ of wine, or the historical aspects of terroir and its preservation, may find them confronting. In contrast, they offer an opportunity to those interested in the biophysical elements of terroir, and efforts aimed at better understanding how these impact on vineyard performance and the sensory attributes of resultant wines. At the previous Terroir Congress, we demonstrated the potential of analytical methods used at the within-vineyard scale in the development of Precision Viticulture, in contributing to a quantitative understanding of regional terroir. For this conference, we take this approach forward with examples from contrasting locations in both the northern and southern hemispheres. We show how, by focussing on the vineyards within winegrowing regions, as opposed to all of the land within those regions, we might move towards a more robust terroir zoning than one derived from a mixture of history, thematic mapping, heuristics and the whims of marketers. Aside from providing improved understanding by underpinning terroir with data, such methods should also promote improved management of the entire wine value chain.

The aroma diversity of italian white wines

AIM: Aroma is a key contributor to white wines sensory typicality, perceived diversity and overall preference.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Digitalization and valorization of the genotypic and phenotypic information retained within the FEM grapevine germplasm

The maintenance and valorization of genetic diversity is an undoubtable resource for the viticulture of the future, since the climate crisis is forcing us to think of new, more resilient varieties. For this reason, the grapevine germplasm of the Fondazione Edmund Mach has been continuously expanded in the last decade to a total of 3,120 accessions, whose trueness-to-type has been verified by means of the universal set of nine microsatellites. About two thirds are V. vinifera subsp. vinifera accessions, while the rest consists of naturalized and selected hybrids, V. vinifera subsp. sylvestris, and pure species. The genetic material has also been characterized over three consecutive years for ampelographic, vine development, and biotic stress response traits to be exploited for experimental purposes.