terclim by ICS banner
IVES 9 IVES Conference Series 9 The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Abstract

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘CandidatusPhytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci.22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity. Phosphoglucoisomerase converse glucose-1-phosphate to glucose-6-phosphate, which can be used as a substrate for starch biosynthesis. Besides, phosphoglucomutase activity was induced also in Nicotiana benthamiana leaves transiently transformed with the construct of putative effector PoStoSP28, previously annotated as an antigenic membrane protein StAMP related to interaction of phytoplasma with its insect vector. Using a pull-down assay and in planta co-IP assay, we confirmed that PoStoSP28 interacts with both grapevine phosphoglucomutases. In transiently transformed N. benthamiana leaves, PoStoSP28 was localized in the nucleus and cytosol and accompanied by a distinct border at the periphery or just outside the nucleus and in the thread-like structures spanning the cells. Upon closer inspection, some autophagosome-like structures were found in N. benthamiana cells expressing the PoStoSP28 effector. Moreover, PoStoSP28 was not only localized in the autophagosome but also increased the occurrence of autophagosomes (Dermastia et al., 2023, Front. Plant Sci. 14: 1232367). Therefore, the results suggest that PoStoSP28 plays a role in the pathogenicity of phytoplasma in grapevine by interacting with grapevine phosphoglucomutase enzymes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Maruša Pompe Novak1,2*, Rebeka Strah1,3, Špela Tomaž1,3, Tjaša Lukan1, Anna Coll1, Maja Zagorščak1, Kristina Gruden1, Günter Brader4, Marina Dermastia1

1 Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
2 Faculty of Viticulture and Enology, University of Nova Gorica, Vipava, Slovenia
3 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
4 Bioresources Unit, Health & Environment Department, Austrian Institute of Technology, Tulln, Austria

Contact the author*

Keywords

grapevine, Candidatus Phytoplasma solani, effector, StAMP, phosphoglucomutase

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Landscape study of the Suzette rural district. A vineyard in the heart of the Dentelles de Montmirail

Le territoire de Suzette se développe sur un grand coteau viticole et boisé situé au cœur du site naturel des Dentelles de Montmirail (40km au nord d’Avignon). Ce site est à la fois l’un des pôles d’attraction touristique du département et le lieu d’une production viticole renommée (Gigondas, Vacqueyras, Beaumes de Venise, … ). Cet ensemble remarquable de terrasses viticoles et de crêtes rocheuses et boisées, forme un des paysages emblématiques du Vaucluse. La commune est actuellement soumise à une importante pression foncière due à une forte demande résidentielle. Le paysage du coteau forme et possède de ce fait un patrimoine culturel de valeur et une image de marque importante pour la production viticole locale.

Yeasts protein extracts: new low impact tool for wine protein stability

Yeast protein extracts (ypes) have flocculating properties, allowing clarification of musts and wines. They are already authorized by oiv for fining purposes with a maximum dosage limit of 60 g/hl for red wines, and 30 g/hl for musts, white and rosè wines. The extraction of ypes from the cytoplasm of yeasts (saccharomyces spp) cells is defined by the resolution oiv oeno 452-2012, that indicate also some specification of the final product.

Fresh odorous terpenoids in wines, multiples pathways of limonene degradation.

Mint aromas in wine, which manifest as “cool” or “fresh” character, can originate from different chemical classes, one of which is the terpenoids. A broadly diverse, naturally occurring class of chemical compounds, terpenes possess wide applications across multiple industries due to their pharmaceutical, antiseptic, medical, and aromatic properties. Monoterpenes, a subclass of terpenoids, likewise play a major role in wine sensory perception. Within the monoterpenes, those possessing “mint” odor qualities have often been studied in the context of “vegetal” or “herbal” wine faults; however, their role in positive aromatic evolution is less understood. Yet an extensive 2015 study of older premium Bordeaux red wines identified mint as a contributing factor in quality bouquet development. From that point, it was necessary to investigate the origins of those monoterpenes as well as the chemical conditions required for their development during ageing. Those two key points could finally facilitate predicting the apparition of minty character in older wines based on their composition while young.
A principal contributor is the cyclic monoterpene limonene, which was isolated relatively early in grapes and wine. Not only does limonene itself possess a cool, fresh odor, it is also a precursor for, and possible derivative of, additional mint monoterpenes. Among the most commonly found monoterpenes, limonene and its derivatives can constitute the majority of the essential oils of citrus fruits, mint and herb plants, and coniferous trees. Many of these mint monoterpenes also occur in grapes and wine. With aromas ranging from woody and earthy to citrus to mint and herbaceous, their contribution to wine is potentially diverse and multi-faceted. While sometimes, found at concentrations below the sensory threshold, synergistic effects between these molecules could render them perceivable.
This review looks at limonene and its transformation as studied in different matrices, and potential parallels or analogues in wine. Moreover, within the complex kinetics of wine aging, the relative concentrations of mint monoterpenes appears to continue to evolve and change, with additional evidence from model wine solutions suggesting they may even revert to their originating precursors. Continued study of mint monoterpenes and their role in wine aromatics will contribute to a deeper understanding of the development of aging bouquet and the longevity of premium wines.

Stem growth disorder and xylem anatomy modifications during esca pathogenesis in grapevines

Esca is a grapevine vascular disease with detrimental consequences on vineyard yield and longevity. Recently, esca leaf symptom development has been shown to result in the occlusion of xylem vessels by tyloses in leaves and stems, leading to hydraulic failure. However, little is known regarding the response of xylem anatomy and stem growth to esca in different varieties . Here we studied the impact of esca leaf symptom development on grapevine physiology, stem growth, and xylem anatomy in two widespread cultivars, Cabernet sauvignon and Sauvignon blanc.

Evolution of the amino acids content through grape ripening: Effect of foliar application of methyl jasmonate with or without urea

The parameters that determine the grape quality, and therefore the optimal harvest time, suffer variations during berry ripening, related to climate change, with the widely known problem of the gap between technological and phenolic maturities. However, there are few studies about its incidence on grape nitrogen composition. For this reason, the use of an elicitor, methyl jasmonate (MeJ), alone or with urea, is proposed as a tool to reduce climatic decoupling, allowing to establish the harvest time in order to achieve the optimum grape quality. The aim was to study the effect of MeJ and MeJ+Urea foliar applications on the evolution of Tempranillo amino acids content throughout the grape maturation. Three treatments were foliarly applied, at veraison and 7 days later: control (water), MeJ (10 mM) and MeJ+Urea (10 mM+6 kg N/ha). Grape samples were taken at five stages of maturation: day before the first and second applications, 15 days after the second application (pre-harvest), harvest day, and 15 days after harvest (post-harvest). The amino acids analysis of the samples was carried out by HPLC. Results showed that the evolution of amino acids was similar regardless of the treatment; however, foliar applications influenced the nitrogen compounds content, i.e., there was no qualitative effect but quantitative one. Most of the amino acids reached their maximum concentration in pre-harvest, being higher in grapes from the treatments than in the control. In general, no differences in grape amino acids content were observed between MeJ and MeJ+Urea treatments. Foliar applications with MeJ and MeJ+Urea enhanced the grape amino acids content, without affecting their profile, helping to optimize their quality and allowing to establish a more complete grape ripening standard. Therefore, MeJ and MeJ+Urea foliar applications can be a simple agronomic practice, which has shown promising results in order to enhance the grape quality.