terclim by ICS banner
IVES 9 IVES Conference Series 9 The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Abstract

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘CandidatusPhytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci.22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity. Phosphoglucoisomerase converse glucose-1-phosphate to glucose-6-phosphate, which can be used as a substrate for starch biosynthesis. Besides, phosphoglucomutase activity was induced also in Nicotiana benthamiana leaves transiently transformed with the construct of putative effector PoStoSP28, previously annotated as an antigenic membrane protein StAMP related to interaction of phytoplasma with its insect vector. Using a pull-down assay and in planta co-IP assay, we confirmed that PoStoSP28 interacts with both grapevine phosphoglucomutases. In transiently transformed N. benthamiana leaves, PoStoSP28 was localized in the nucleus and cytosol and accompanied by a distinct border at the periphery or just outside the nucleus and in the thread-like structures spanning the cells. Upon closer inspection, some autophagosome-like structures were found in N. benthamiana cells expressing the PoStoSP28 effector. Moreover, PoStoSP28 was not only localized in the autophagosome but also increased the occurrence of autophagosomes (Dermastia et al., 2023, Front. Plant Sci. 14: 1232367). Therefore, the results suggest that PoStoSP28 plays a role in the pathogenicity of phytoplasma in grapevine by interacting with grapevine phosphoglucomutase enzymes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Maruša Pompe Novak1,2*, Rebeka Strah1,3, Špela Tomaž1,3, Tjaša Lukan1, Anna Coll1, Maja Zagorščak1, Kristina Gruden1, Günter Brader4, Marina Dermastia1

1 Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
2 Faculty of Viticulture and Enology, University of Nova Gorica, Vipava, Slovenia
3 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
4 Bioresources Unit, Health & Environment Department, Austrian Institute of Technology, Tulln, Austria

Contact the author*

Keywords

grapevine, Candidatus Phytoplasma solani, effector, StAMP, phosphoglucomutase

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

AIM: Glutathione (GSH) is a non-protein thiol naturally present in grape berries and produced by yeasts during fermentation. It has a strong antioxidant activity, thus can be added during winemaking to limit the oxidative phenomena of wine, preserving sensory characteristics and stability, ultimately promoting a healthier product by reducing the need for SO2 addition.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

Effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine

In this video recording of the IVES science meeting 2023, Fernando Zamora (Department of biochemistry and biotechnology, Faculty of oenology, Universitat Rovira i Virgili, Spain) speaks about the effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine. This presentation is based on an original article accessible for free on OENO One.

Effects of Silver Thiosulphate and Salicylic Acid on the long-term maintenance of the embryogenic callus of Vitis vinifera

New Plant Breeding Techniques (NPBTs) have the potential to revolutionize the genetic improvement of grapevine. However, the practical application of these techniques is limited by several challenges, such as the difficulty in generating embryogenic calluses, maintaining their competence during in vitro cultivation, and regenerating plants without defects. To overcome these challenges, we conducted a study to test the effect of two treatments on callus cultures derived from different grapevine varieties, with and without embryogenic competence. The tested substances were Silver Thiosulphate (STS) an ethylene inhibitor, and Salicylic Acid (SA), an elicitor with different effects depending on the concentration of use beyond the ethylene inhibitor activity.

Exploring induced mutagenesis as a tool for grapevine intra-varietal improvement: increased diversity in ripening periods and bunch traits with climate resilience potential

The wine industry currently relies on a limited number of grapevine cultivars, comprised of numerous clones with slight differences in their viticultural, oenological, or stress-tolerance traits.