Terroir 2016 banner
IVES 9 IVES Conference Series 9 Cover crops competition for water in vineyards: case studies in mediterranean terroirs

Cover crops competition for water in vineyards: case studies in mediterranean terroirs

Abstract

Vineyard cover cropping is a cultural practice widely used in many of the world’s winegrowing regions being one of the most recommended practices to face climate changes and to promote vineyard environmental sustainability. The benefits of using cover crops are many ranging from environmental protection (e.g. control of soil erosion, enhancement of soil structure and biodiversity, sequestering carbon) to vineyard management, including control of vigor and improvement of berry composition. Despite those potential benefits, the adoption of cover crops in Mediterranean non-irrigated vineyards has been limited by the concern of excessive water competition between cover crops and vines. However the level of this competition should be better understood as in warm and dry terroirs, like the case of Mediterranean winegrowing regions, water competition by the cover crops is effective mainly during spring. During summer, the almost absence or rainfall induces the dry out of the sward vegetation which residues became dead mulch that can even reduce soil evaporation. Furthermore, some research has also demonstrated that, after some years of competition with swards, the vines were able to develop deeper roots, therefore increasing the capacity for water extraction from deeper soil layers.

In order to further elucidate the above mentioned topics, in this paper data on water use and grapevine performance obtained in three floor management experiments (soil tillage vs. inter-row swards), carried out in three different winegrowing regions of the Mediterranean Portugal (covering rainfed and irrigated vineyards), will be presented. Discussion will be focus on water competition by the swards and corresponding effects on grapevine vigor, yield and berry composition. The effect of terroir on grapevine responses will be also underlined. From the data presented it can be concluded that cover crops is a vineyard management practice that can have a positive influence on water use efficiency, either by preventing vine excessive vigor when water is fully available during spring or by maximizing the volume of soil explored by vine roots through the enhancement of the exploitation of soil water reserves into deeper layers. However, in the case of low vigor vineyards located in dry terroirs, the degree of water competition between cover crops and vine must be carefully monitored and managed (e.g. by increasing mowing frequency, reducing the sward strip and/or choosing less competitive species) and adjustments in conventional irrigation management are necessary in order to avoid detrimental effects on grapevine yield and longevity.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Carlos M. LOPES

LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa

Contact the author

Keywords

Grapevine, resident vegetation, soil management, soil tillage, water use

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Influence of the irrigation period in Tempranillo grapevine, under the edaphoclimatic conditions of the Duero river valley

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

Physiological behavior of the Chasselas grape variety under water deficit: 30 years of experiments in Switzerland

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

Genetic and hormonal regulation of grape berry cuticle formation

The plant surface typically comprises of various epidermal cell types which synthesise and deposit a protective waxy layer known as the cuticle. The cuticle is a significant contributor to important crop traits related to drought tolerance, biotic stress, postharvest fruit quality as well as providing structural support. In this work we have investigated grape berry cuticle formation in the context of the accumulation of anti-fungal specialised metabolites and the ability of the cuticle to structurally cope with the rapid expansion of ripening berries. Metabolic QTL analysis was performed in a grapevine cross population, using chemical profiling data collected via GC-MS analysis for cuticular waxes.