terclim by ICS banner
IVES 9 IVES Conference Series 9 Physiological means to curb the enthusiasm of viruses from infecting grapevines  

Physiological means to curb the enthusiasm of viruses from infecting grapevines  

Abstract

The two most deadly viruses infecting and threatening the productivity of grapevines worldwide are leafroll and red blotch viruses. There is no cure for viral diseases other than roguing the symptomatic vines and replacing them with certified vines derived from clean, virus-tested stocks. 
Given that phloem plays a central role in virus infection, this study aimed to purge the virus by girdling the phloem of leafroll-infected vines at different phenological stages of infected grapevines. Phloem-girdling was performed on canes at veraison to varying regions between the proximal and distal clusters. The vines responded to gridling by forming a callus to bridge the gap and restore vascular functionality. The whole lamina of the leaves above the girdled region turned red due to anthocyanin accumulation triggered by sugars confined to the leaf. This reddening was quite different from the reddening that typically occurs in the leafroll-infected vines, wherein the whole lamina turned red except for the lamina close to the major and minor veins, giving the impression of green veins. The girdled canes showed a low virus concentration compared to the ungirdled canes. Also, the primary metabolites, such as sugars, acids, and nitrogenous compounds, and the secondary metabolites, such as flavanols (tannins), flavonols, and anthocyanins desired for making wine did not vary much between the girdled and ungirdled shoots. This study showed that by girdling the phloem over several growing seasons can reduce the virus load in the infected vines, restoring the vine’s health.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Bhaskar Bondada*

Washington State University Tri-Cities, Wine Science Center, Richland, WA, USA

Contact the author*

Keywords

Acids, Anthocyanins, callus, girdling, phenolics, phloem, sugars

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Different soil types and relief influence the quality of Merlot grapes in a relatively small area in the Vipava Valley (Slovenia) in relation to the vine water status

Besides location and microclimatic conditions, soil plays an important role in the quality of grapes and wine. Soil properties influence…

Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Recent advances in phenomics and transcriptomics have the enhanced capacity for understanding how clonally propagated perennial crops like grapevines respond to their environments seasonally and over the course of multiple years. Because most grapevines are grafted, above-ground grapevine traits reflect scion genotype and its interaction with the local environment. In addition, traits expressed by the scion reflect rootstock genotype and how that rootstock is interacting with its environment seasonally and across years. To investigate rootstock x environment interaction on shoot systems in grafted grapevines we characterized comprehensive phenotypic variation in an experimental vineyard in Mount Vernon, Missouri, USA where the grapevine cultivar ‘Chambourcin’ is growing on its own roots and is grafted to three different rootstocks (‘1103P’, ‘3309C’, ‘SO4’).

High throughput winter pruning weight estimation based on wood volume evaluation 

There is currently a real need to improve and speed-up phenotyping in experimental set-ups to increase the number of modalities studied. Accurate information acquisition on plant status with high-throughput capacity is the main appeal of on-board systems.
A proximal sensing camera for a proxy of winter pruning weight was tested. We estimated the shoot volume of the vine by image analysis using algorithms that integrate the local shoot section area estimate along the shoot skeleton obtained by a morphological distance transform.
The study was carried out on the GreffAdapt experimental vineyard in Guyot simple training and a canopy management using vertical trellising. The planting density is 6250 vines/ha with a row spacing of 1.6×1m. Five scions grafted onto 55 rootstocks are present and the combination rootstock×scion is different every five plants.

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

Qualité des vins et Terroirs. Incidence du milieu naturel sur la composition aromatique des vins

The northern vineyards produce wines with a high aromatic richness. The wines of Alsace are appreciated for the diversity of their aromas, the typicality of which was for a long time judged mainly according to the grape variety of origin. Alsatian winegrowers have however widely sensed the importance of the environment of the vine on the quality of the wines. Efforts are made to try to harmonize in a reasoned way the interaction between the natural environment and the plant material with a view to developing the character of the grape variety through the fine expression of the terroir and making the quality and typicality even more inimitable. wines produced in Alsace.