terclim by ICS banner
IVES 9 IVES Conference Series 9 Physiological means to curb the enthusiasm of viruses from infecting grapevines  

Physiological means to curb the enthusiasm of viruses from infecting grapevines  

Abstract

The two most deadly viruses infecting and threatening the productivity of grapevines worldwide are leafroll and red blotch viruses. There is no cure for viral diseases other than roguing the symptomatic vines and replacing them with certified vines derived from clean, virus-tested stocks. 
Given that phloem plays a central role in virus infection, this study aimed to purge the virus by girdling the phloem of leafroll-infected vines at different phenological stages of infected grapevines. Phloem-girdling was performed on canes at veraison to varying regions between the proximal and distal clusters. The vines responded to gridling by forming a callus to bridge the gap and restore vascular functionality. The whole lamina of the leaves above the girdled region turned red due to anthocyanin accumulation triggered by sugars confined to the leaf. This reddening was quite different from the reddening that typically occurs in the leafroll-infected vines, wherein the whole lamina turned red except for the lamina close to the major and minor veins, giving the impression of green veins. The girdled canes showed a low virus concentration compared to the ungirdled canes. Also, the primary metabolites, such as sugars, acids, and nitrogenous compounds, and the secondary metabolites, such as flavanols (tannins), flavonols, and anthocyanins desired for making wine did not vary much between the girdled and ungirdled shoots. This study showed that by girdling the phloem over several growing seasons can reduce the virus load in the infected vines, restoring the vine’s health.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Bhaskar Bondada*

Washington State University Tri-Cities, Wine Science Center, Richland, WA, USA

Contact the author*

Keywords

Acids, Anthocyanins, callus, girdling, phenolics, phloem, sugars

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

The leaf area is of fundamental importance so that the plant can realize adequate levels of photosynthesis for the accumulation of reserves and to reach a suitable maturation of
the berries. In this sense, the objective was to evaluate the effect of different lengths of the stalks from the first support wire, in the must and in the wine of ‘Cabernet Sauvignon’.

Main viticultural soils in Castilla – La Mancha (Spain)

Castilla-La Mancha is the biggest vineyard in the world. Once similar soils have been identified in Castilla-La Mancha (soil

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

Influence of precipitation on the phenolic and isotopic composition of Vitis Vinifera red wines

This study investigates how precipitation from November to February during each harvest year, influence the phenolic and isotopic profiles of red wines, particularly focusing on trans-resveratrol, total phenolic compounds, and carbon and oxygen isotopes (¹³C/¹²C and ¹⁸O/¹⁶O).

Vite e territorio. Il caso della Franciacorta nel medioevo

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...