terclim by ICS banner
IVES 9 IVES Conference Series 9 Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Abstract

Over the past 70 years, scientific literature has consistently illustrated the advantageous effects of arbuscular mycorrhiza fungi (AMF) on plant growth and stress tolerance. Recent reviews not only reaffirm these findings but also underscore the pivotal role of AMF in ensuring the sustainability of viticulture. In fact, various companies actively promote commercial inoculants based on AMF as biofertilizers or biostimulants for sustainable viticulture. However, despite the touted benefits of these products, the consistent effectiveness of AMF inoculants in real-world field conditions remains uncertain. Our study investigates the influence of a commercial AMF inoculant containing a mycorrhizal complex of Rhizophagus irregularis and Funneliformis mosseae on a five-year-old vineyard featuring a local grape cultivar (Callet) grafted onto a common rootstock (R110). We monitored the physiological well-being and productivity of inoculated vines compared to control counterparts. Additionally, we assessed the impact of inoculation on the root fungal community determined by NGS of roots DNA from ITS (fungi) regions using Illumina technology. We did not find a statistically significant increase in the photosynthetic rate of inoculated plants, although it did present significantly greater stomatal conductance. Moreover, there were not statistical differences on productivity or grape quality. There was a slight increase in root fungal Shannon diversity in the inoculated plants at beginning of summer but without generating statistically significant differences.  Furthermore, the analysis of the fungal community of the roots, conducted through NMDS with the Bray-Curtis distance, showed no detectable changes in the fungal community after inoculation.

Numerous studies highlight the context-dependent nature of AMF inoculation’s effects, making it challenging to predict outcomes in field conditions. Failures encountered in trials like ours contribute valuable information to the scientific literature, aiding in the determination of prerequisites for effective biofertilizer use in commercial agriculture. Ultimately, the effectiveness of AMF-based biofertilizers remains contingent on specific conditions, highlighting the need for additional research to ensure their consistent and reliable application.

Funding: PID2021-125575OR-C22 project funded by MCIN/AEI/10.13039/501100011033/ and FEDER Una manera de hacer Europa

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Elena Baraza 1,2, Joshua Borras 1, Arantzazu Molins 1.2, and Josefina Bota* 1,2  

1 Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB)
2 Agro-Environmental and Water Economics Institute (INAGEA). Carretera de Valldemossa Km 7.5, 07122 Palma, Balearic Islands, Spain

Contact the author*

Keywords

Arbuscular mycorrhiza fungi (AMF), Biofertilizer, Effectiveness, NGS (Next-Generation Sequencing), Root fungal community, Sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Ten years soil diagnosis in vineyards, with particularly analysis of organic and microbial mass and measuring their evolution

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France.

May lactic acid bacteria play an important role in sparkling wine elaboration?

The elaboration of sparkling wine is a demanding process requiring technical as well as scientific skills. Uncovering the role of the terroir to the final product quality is of great importance for the wine market. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown. The malolactic fermentation (MLF) is carried out by the lactic acid bacteria after the alcoholic fermentation in order to ensure the microbial stability during the second fermentation that takes place in the bottle or in tanks. Oenococcus oeni is the only selected species to drive MLF that has been commercialized for sparkling wine elaboration and it is naturally present on grapes, in the cellar and also in the final product. However, whether the bacterial strain contributes to the sensory characteristics of sparkling wine is still questioned.

DNA-free genome editing confers disease resistance in grapevine varieties

The grapevine is facing significant challenges due to climate change, as rising temperatures impact its physiological traits and disrupt plant phenology.

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress.