terclim by ICS banner
IVES 9 IVES Conference Series 9 Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Abstract

Over the past 70 years, scientific literature has consistently illustrated the advantageous effects of arbuscular mycorrhiza fungi (AMF) on plant growth and stress tolerance. Recent reviews not only reaffirm these findings but also underscore the pivotal role of AMF in ensuring the sustainability of viticulture. In fact, various companies actively promote commercial inoculants based on AMF as biofertilizers or biostimulants for sustainable viticulture. However, despite the touted benefits of these products, the consistent effectiveness of AMF inoculants in real-world field conditions remains uncertain. Our study investigates the influence of a commercial AMF inoculant containing a mycorrhizal complex of Rhizophagus irregularis and Funneliformis mosseae on a five-year-old vineyard featuring a local grape cultivar (Callet) grafted onto a common rootstock (R110). We monitored the physiological well-being and productivity of inoculated vines compared to control counterparts. Additionally, we assessed the impact of inoculation on the root fungal community determined by NGS of roots DNA from ITS (fungi) regions using Illumina technology. We did not find a statistically significant increase in the photosynthetic rate of inoculated plants, although it did present significantly greater stomatal conductance. Moreover, there were not statistical differences on productivity or grape quality. There was a slight increase in root fungal Shannon diversity in the inoculated plants at beginning of summer but without generating statistically significant differences.  Furthermore, the analysis of the fungal community of the roots, conducted through NMDS with the Bray-Curtis distance, showed no detectable changes in the fungal community after inoculation.

Numerous studies highlight the context-dependent nature of AMF inoculation’s effects, making it challenging to predict outcomes in field conditions. Failures encountered in trials like ours contribute valuable information to the scientific literature, aiding in the determination of prerequisites for effective biofertilizer use in commercial agriculture. Ultimately, the effectiveness of AMF-based biofertilizers remains contingent on specific conditions, highlighting the need for additional research to ensure their consistent and reliable application.

Funding: PID2021-125575OR-C22 project funded by MCIN/AEI/10.13039/501100011033/ and FEDER Una manera de hacer Europa

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Elena Baraza 1,2, Joshua Borras 1, Arantzazu Molins 1.2, and Josefina Bota* 1,2  

1 Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB)
2 Agro-Environmental and Water Economics Institute (INAGEA). Carretera de Valldemossa Km 7.5, 07122 Palma, Balearic Islands, Spain

Contact the author*

Keywords

Arbuscular mycorrhiza fungi (AMF), Biofertilizer, Effectiveness, NGS (Next-Generation Sequencing), Root fungal community, Sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Grapevine yield-gap: identification of environmental limitations by soil and climate zoning in Languedoc-Roussillon region (south of France)

Grapevine yield has been historically overlooked, assuming a strong trade-off between grape yield and wine quality. At present, menaced by climate change, many vineyards in Southern France are far from the quality label threshold, becoming grapevine yield-gaps a major subject of concern. Although yield-gaps are well studied in arable crops, we know very little about grapevine yield-gaps. In the present study, we analysed the environmental component of grapevine yield-gaps linked to climate and soil resources in the Languedoc Roussillon. We used SAFRAN data and IGP Pays d’Oc wine yields from 2010 to 2018. We selected climate and soil indicators proving to have a significant effect on average wine yield-gaps at the municipality scale. The most significant factors of grapevine yield were the Soil Available Water Capacity; followed by the Huglin Index and the Climatic Dryness Index. The Days of Frost; the Soil pH; and the Very Hot Days were also significant. Then, we clustered geographical zones presenting similar indicators, facilitating the identification of resources yield-gaps. We discussed the number of zones with the experts of IGP Pays d’Oc label, obtaining 7 zones with similar limitations for grapevine yield. Finally, we analysed the main resources causing yield-gaps and the grapevine varieties planted on each zone. Mapping grapevine resource yield-gaps are the first stage for understanding grapevine yield-gaps at the regional scale.

About long time and vine quality modelisation e pistemological appro ach to geographical viticulture

This work began as an intellectual game, in order to discuss the notion of wine quality in terms of terroir and territory spatial structure. Vine and wine quality has long been questioned by scientists. Each discipline approaching it with his own tools.

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

A meta-analysis of the ecological impact of viticultural practices on soil biodiversity

Viticulture is facing two major challenges – climate change and agroecological transition. The soil plays a pivotal role in these transition processes. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Over the last 15 years, numerous studies evidenced strong effects of viticultural practices on the soil physical, chemical and biological quality. However, to date a global analysis providing a comprehensive overview of the ecological impacts of viticultural practices on soil biological quality is missing.

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.