terclim by ICS banner
IVES 9 IVES Conference Series 9 Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Abstract

Over the past 70 years, scientific literature has consistently illustrated the advantageous effects of arbuscular mycorrhiza fungi (AMF) on plant growth and stress tolerance. Recent reviews not only reaffirm these findings but also underscore the pivotal role of AMF in ensuring the sustainability of viticulture. In fact, various companies actively promote commercial inoculants based on AMF as biofertilizers or biostimulants for sustainable viticulture. However, despite the touted benefits of these products, the consistent effectiveness of AMF inoculants in real-world field conditions remains uncertain. Our study investigates the influence of a commercial AMF inoculant containing a mycorrhizal complex of Rhizophagus irregularis and Funneliformis mosseae on a five-year-old vineyard featuring a local grape cultivar (Callet) grafted onto a common rootstock (R110). We monitored the physiological well-being and productivity of inoculated vines compared to control counterparts. Additionally, we assessed the impact of inoculation on the root fungal community determined by NGS of roots DNA from ITS (fungi) regions using Illumina technology. We did not find a statistically significant increase in the photosynthetic rate of inoculated plants, although it did present significantly greater stomatal conductance. Moreover, there were not statistical differences on productivity or grape quality. There was a slight increase in root fungal Shannon diversity in the inoculated plants at beginning of summer but without generating statistically significant differences.  Furthermore, the analysis of the fungal community of the roots, conducted through NMDS with the Bray-Curtis distance, showed no detectable changes in the fungal community after inoculation.

Numerous studies highlight the context-dependent nature of AMF inoculation’s effects, making it challenging to predict outcomes in field conditions. Failures encountered in trials like ours contribute valuable information to the scientific literature, aiding in the determination of prerequisites for effective biofertilizer use in commercial agriculture. Ultimately, the effectiveness of AMF-based biofertilizers remains contingent on specific conditions, highlighting the need for additional research to ensure their consistent and reliable application.

Funding: PID2021-125575OR-C22 project funded by MCIN/AEI/10.13039/501100011033/ and FEDER Una manera de hacer Europa

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Elena Baraza 1,2, Joshua Borras 1, Arantzazu Molins 1.2, and Josefina Bota* 1,2  

1 Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB)
2 Agro-Environmental and Water Economics Institute (INAGEA). Carretera de Valldemossa Km 7.5, 07122 Palma, Balearic Islands, Spain

Contact the author*

Keywords

Arbuscular mycorrhiza fungi (AMF), Biofertilizer, Effectiveness, NGS (Next-Generation Sequencing), Root fungal community, Sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays.

Impact of genotypic variability on grapevine architecture and light interception: A functional-structural modelling approach

Aerial architecture plays a key role in plant functioning as it affects light interception and microclimate. In grapevine, this architecture is primarily shaped by winter pruning and further adjusted through practices such as leaf thinning and topping during the growth cycle.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.