terclim by ICS banner
IVES 9 IVES Conference Series 9 Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Abstract

Today’s viticulture faces a considerable challenge dealing with fungal diseases and limitations on the use of plant protection products (PPP) have increased the pressure to find more sustainable alternatives. One strategy may be the development and cultivation of disease-resistant grapevine varieties (PIWI) that could maintain crop productivity and quality while reducing dependence on PPP. In this work a set of 9 PIWI varieties (5 white and 4 red) deploying genes for resistance to powdery and downy mildew were evaluated in two consecutive years in Valdegón, La Rioja, with Tempranillo and Viura as controls. The objective was to correlate agronomic performance and disease incidence with the presence of disease resistance genes in two different seasons: with (2023) and without disease pressure (2022).

Results showed that genotypes harbouring more than one resistance gene such as Soreli (Rpv3 + Repv12), S. Rytos (Rpv 3 + Ren3) or Julius (Rpv12 + Ren3), are more resilient to both diseases, regardless of whether both are against the same disease, suggesting a synergistic effect. Moreover, cultivars more resilient to both mildews did not show any reduction in yield, compared to C. Volos that showed a 42,5% reduction, S. Kretos about 50% or controls Viura (62,3%) and Tempranillo (65,5%) in productivity during the disease-pressured season. Further research will focus on the role of rhizospheric microbiome on disease incidence.

 

Acknowledgments: This work has been funded by the Government of La Rioja, (Fortalece 2021/08). Support from the CIDA’s staff and the Plant Resources service of the ICVV is gratefully acknowledged.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Sara I. Blanco – González, M.M. Hernández*, C.M. Menéndez

Instituto de Ciencias de la Vid y el Vino (ICVV (UR-GR-CSIC)), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain

Contact the author*

Keywords

PIWI, powdery mildew, downey mildew, sustainable viticulture, biotic stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Observation and modeling of climate at fine scales in wine-producing areas

Global change in climate affect regional climates and hold implications for viticulture worldwide. Despite numerous studies on the impact of projected global warming on different regions

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.

Crossed approaches to experimental economics and sensory analysis regarding noble rot sweet wines perception

Noble rot sweet wines are reputed wines, traditionally elaborated according to a singular vinification process involving the harvesting of overripe grapes under the action of the ascomycete fungus Botrytis cinerea.

Grapevine sugar concentration model in the Douro Superior, Portugal

Increasingly warm and dry climate conditions are challenging the viticulture and winemaking sector. Digital technologies and crop modelling bear the promise to provide practical answers to those challenges. As viticultural activities strongly depend on harvest date, its early prediction is particularly important, since the success of winemaking practices largely depends upon this key event, which should be based on an accurate and advanced plan of the annual cycle. Herein, we demonstrate the creation of modelling tools to assess grape ripeness, through sugar concentration monitoring. The study area, the Portuguese Côa valley wine region, represents an important terroir in the “Douro Superior” subregion. Two varieties (cv. Touriga Nacional and Touriga Franca) grown in five locations across the Côa Region were considered. Sugar accumulation in grapes, with concentrations between 170 and 230 g l-1, was used from 2014 to 2020 as an indicator of technological maturity conditioned by meteorological factors. The climatic time series were retrieved from the EU Copernicus Service, while sugar data were collected by a non-profit organization, ADVID, and by Sogrape, a leading wine company. The software for calibrating and validating this model framework was the Phenology Modeling Platform (PMP), version 5.5, using Sigmoid and growing degree-day (GDD) models for predictions. The performance was assessed through two metrics: Roots Mean Square Error (RMSE) and efficiency coefficient (EFF), while validation was undertaken using leave-one-out cross-validation. Our findings demonstrate that sugar content is mainly dependent on temperature and air humidity. The models achieved a performance of 0.65

Biophysical and agronomical drivers of the distribution of Plasmopara viticola oospores in vineyard soils

Grapevine downy mildew (GDM), caused by the obligate biotroph oomycete Plasmopara viticola, is one of the most destructive diseases in viticulture.