terclim by ICS banner
IVES 9 IVES Conference Series 9 Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Abstract

Today’s viticulture faces a considerable challenge dealing with fungal diseases and limitations on the use of plant protection products (PPP) have increased the pressure to find more sustainable alternatives. One strategy may be the development and cultivation of disease-resistant grapevine varieties (PIWI) that could maintain crop productivity and quality while reducing dependence on PPP. In this work a set of 9 PIWI varieties (5 white and 4 red) deploying genes for resistance to powdery and downy mildew were evaluated in two consecutive years in Valdegón, La Rioja, with Tempranillo and Viura as controls. The objective was to correlate agronomic performance and disease incidence with the presence of disease resistance genes in two different seasons: with (2023) and without disease pressure (2022).

Results showed that genotypes harbouring more than one resistance gene such as Soreli (Rpv3 + Repv12), S. Rytos (Rpv 3 + Ren3) or Julius (Rpv12 + Ren3), are more resilient to both diseases, regardless of whether both are against the same disease, suggesting a synergistic effect. Moreover, cultivars more resilient to both mildews did not show any reduction in yield, compared to C. Volos that showed a 42,5% reduction, S. Kretos about 50% or controls Viura (62,3%) and Tempranillo (65,5%) in productivity during the disease-pressured season. Further research will focus on the role of rhizospheric microbiome on disease incidence.

 

Acknowledgments: This work has been funded by the Government of La Rioja, (Fortalece 2021/08). Support from the CIDA’s staff and the Plant Resources service of the ICVV is gratefully acknowledged.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Sara I. Blanco – González, M.M. Hernández*, C.M. Menéndez

Instituto de Ciencias de la Vid y el Vino (ICVV (UR-GR-CSIC)), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain

Contact the author*

Keywords

PIWI, powdery mildew, downey mildew, sustainable viticulture, biotic stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Natural magnetic levitation for the storage of wine bottles

Wine storage ensuring the quality and correct aging is one of the issues that wineries, wine traders and consumers encounter after wine bottling.

Grapesoil: An integrated model to simulate water and nitrogen fluxes in diversified vineyards

Cover crops in vineyards bring numerous benefits, including enhanced soil health, improved water infiltration, and potential pest reduction. However, they also present risks, such as reduced vine vigour and yield due to competition for water and nutrients (Celette & Gary 2013, Garcia et al., 2018).

Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Exposure to solar radiation affects berry composition through photomorphogenesis or changes in temperature. Flavonol synthesis is upregulated by UV‐B radiation

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Diversity of arbuscular mycorrhizal fungi on grapevine roots across an edaphoclimatic gradient

Challenges associated with climate change, such as soil erosion and drought, have impacted viticulture across wine regions globally in recent decades. As winegrowers struggle to maintain yield and quality standards under these conditions, methods to adapt to and mitigate the impacts of climate change have become more prevalent. One potential mitigation strategy is to enhance symbiotic interaction of grapevine roots with arbuscular mycorrhizal fungi (AMF).