terclim by ICS banner
IVES 9 IVES Conference Series 9 Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Abstract

Today’s viticulture faces a considerable challenge dealing with fungal diseases and limitations on the use of plant protection products (PPP) have increased the pressure to find more sustainable alternatives. One strategy may be the development and cultivation of disease-resistant grapevine varieties (PIWI) that could maintain crop productivity and quality while reducing dependence on PPP. In this work a set of 9 PIWI varieties (5 white and 4 red) deploying genes for resistance to powdery and downy mildew were evaluated in two consecutive years in Valdegón, La Rioja, with Tempranillo and Viura as controls. The objective was to correlate agronomic performance and disease incidence with the presence of disease resistance genes in two different seasons: with (2023) and without disease pressure (2022).

Results showed that genotypes harbouring more than one resistance gene such as Soreli (Rpv3 + Repv12), S. Rytos (Rpv 3 + Ren3) or Julius (Rpv12 + Ren3), are more resilient to both diseases, regardless of whether both are against the same disease, suggesting a synergistic effect. Moreover, cultivars more resilient to both mildews did not show any reduction in yield, compared to C. Volos that showed a 42,5% reduction, S. Kretos about 50% or controls Viura (62,3%) and Tempranillo (65,5%) in productivity during the disease-pressured season. Further research will focus on the role of rhizospheric microbiome on disease incidence.

 

Acknowledgments: This work has been funded by the Government of La Rioja, (Fortalece 2021/08). Support from the CIDA’s staff and the Plant Resources service of the ICVV is gratefully acknowledged.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Sara I. Blanco – González, M.M. Hernández*, C.M. Menéndez

Instituto de Ciencias de la Vid y el Vino (ICVV (UR-GR-CSIC)), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain

Contact the author*

Keywords

PIWI, powdery mildew, downey mildew, sustainable viticulture, biotic stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Potential of native Uruguayan yeast strains for production of Tannat wine

Must fermentation is a complex process influenced by various factors, especially microbiological activities. The characteristics and quality of the resulting wine are closely linked to the stages that unfold throughout this progression.

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].

Lamp – a modern tool for the detection of fungal infections in the vineyard

AIM: Loop-mediated isothermal amplification (LAMP) [1] is a modern technology for fast and sensitive amplification of specific DNA sequences under isothermal conditions. Its simple handling and no need for dedicated equipment together with an evaluation of the amplification event by in-tube detection make this method advantageous and economically affordable for on-site investigations in the industry.

Cell wall remodeling mediated by specific PME genes plays a role in grapevine response to Botrytis cinerea

Botrytis cinerea (Bc) is one of the main pathogens affecting the cultivated grapevine. A key role in grapevine tissue colonization is played by cell wall (CW) remodeling driven by CW Modifying Enzymes (CWMEs), expressed both by the host and the pathogen. Their action can impact CW integrity and trigger specific immune signaling, thus influencing Bc infection outcome. To further characterize the role of the CW in the grapevine response to Bc, two contrasting genotypes in their resistance to the fungus were artificially inoculated at full bloom. RNA-seq analysis and biochemical characterization of the CW and its modification in samples collected at 24 hours post-inoculation highlighted significant differences between genotypes.