terclim by ICS banner
IVES 9 IVES Conference Series 9 REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards


REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area.
Regenerative agriculture ameliorates soil structure and microbial biodiversity that, in turn, leads to crop resilience against biotic and abiotic stressful factors. Moreover, enrichment of beneficial microbes in the rhizosphere, such as PGPR and PGPF, are known to trigger the plant immunity inducing the priming state. REVINE intends to improve the biodiversity in the vineyards by using multiple approaches, including: i) screening of tolerant grapevine genotypes; ii) consociation of the grapevine with profitable cover crops; iii) the use of cultivation practices able to enhance soil biodiversity and the beneficial rhizosphere microorganisms.
REVINE, by means of Regenerative Agriculture, intends to rebuild soil organic matter and restore degraded soil biodiversity. In particular, biochar is a carbon-rich substrate that has multiple effects and can be used as soil amendment. It increases soil water-holding capacity and nutrient-availability for plants, thus positively affecting plant growth and preventing water stress. Moreover, by improving soil’s physical and chemical properties, biochar modifies microbial habitats and fosters the presence of plant beneficial microbes. Biofertilizers and amendments will be produced from crop residues.


Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster


Miguel Cachão1*, Ana Chambel1, Sérgio Pinto1, Goreti Trindade1

1AVIPE, R. D. João de Castro, 12 loja, 2950-206 Palmela, Portugal

Contact the author*


Regenerative agriculture, vineyards, soil microbial biodiversity, biofertilizers


IVES Conference Series | Open GPB | Open GPB 2024


Related articles…

Designing and managing a sustainable vineyard in a climate change scenario

Extension of the growing season, compression of the annual growth cycle and higher frequency and severity of weather extreme events are consistent features of global warming. While mitigation of factors causing global warming is necessary in the medium-long term, wine growers need “ready to go” adaptation practices to counteract negative effects bound to climate change. This must be done in a sustainably way, meaning that remunerative yield, desired grape quality, low production cost and environment friendly solutions must be effectively merged. In this work, we will review contribution given over the last two decades prioritizing issues related to scion and rootstock choice, changes in vineyard floor management, new perception related to the use of irrigation in vineyards, adaptation practices aimed at decompress maturity, solutions to counteract or minimize damages due to late frost and sunburn and, lastly, some hints on how precision viticulture can help with all of this.

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

Comparison of the skin resistance of several grape varieties in relation to their physico-chemical properties

The purpose of this study is to compare the skin resistance (SR) of the grapes with physico-chemical propertiess using a stong dataset and multidimentional statistical analysis .
A recent study has shown the role skin resistance plays against pest invasion but skin resistance could be a useful agronomic parameter, for example in the choice of the type of winemaking, by influencing the quantity of juice during crushing and maceration.

May lactic acid bacteria play an important role in sparkling wine elaboration?

The elaboration of sparkling wine is a demanding process requiring technical as well as scientific skills. Uncovering the role of the terroir to the final product quality is of great importance for the wine market. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown. The malolactic fermentation (MLF) is carried out by the lactic acid bacteria after the alcoholic fermentation in order to ensure the microbial stability during the second fermentation that takes place in the bottle or in tanks. Oenococcus oeni is the only selected species to drive MLF that has been commercialized for sparkling wine elaboration and it is naturally present on grapes, in the cellar and also in the final product. However, whether the bacterial strain contributes to the sensory characteristics of sparkling wine is still questioned.

Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Many of the world’s vineyard regions are located in regions of complex terrain, with the result there is significant local climate variation.