terclim by ICS banner
IVES 9 IVES Conference Series 9 Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Abstract

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role.  Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application.  We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.
Commercial products containing B. velezensis and T. harzianum formulated as wettable powders (WP) or suspension concentrates (SC) were used for viability tests and compared with the same microorganisms prepared as dispersion concentrates (DC) 1:10 ration in CITROFOL® AI. The formulations were subjected to a demanding storage test at 40°C for 24 weeks. Microbial viability was monitored by plate counting periodically.
B. velezensis showed a high overall robustness during storage. However, comparing liquid products, the cell viability in the SC formulation declined by approximately one order of magnitude more than in the DC formulation in CITROFOL® AI. T. harzianum generally was highly susceptible during storage. However, the cell viability after 24 weeks was two orders of magnitude higher when formulated as DC in CITROFOL® AI compared to the WP. Thus, CITROFOL® AI improved the shelf life of both microorganisms tested.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Teresa Berninger1, Carolin Stern1, Victoria Sevillano, Óscar González-López2*

1 Jungbunzlauer Ladenburg GmbH
2 University of La Rioja, Department of Food and Agriculture

Contact the author*

Keywords

Formulation, Viticulture, Citrate ester, Biocontrol, Biostimulant

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Non-destructive his based analysis for shelf-life evaluation of table grape 

Fast, accurate, and non-destructive analytical techniques based on hyperspectral imaging (hsi) represent effective tools for food quality evaluation. A visible change in the appearance of a fresh product often negatively impacts the perceived quality from a consumer’s point of view.

The FEM grapevine breeding program: new registered varieties (mid-)resistant to the main ampelopathies

“Vinum debet esse naturale ex genimine vitis et non corruptum”. The Eucharistic wine must be made with pure grapes that must not be contaminated in any way. This is how wine was born in the monastery of the Augustinians, and that is how the genetic improvement of grapevine implemented over the decades at the Agricultural Institute of San Michele all’Adige (since 1874; Trentino – Italy) has been oriented to make the cultivation of grapes always more sustainable. This concept is still current and meets the worldwide urgent need of reducing the use of chemicals, under a climate crisis scenario. Since the beginning of the twentieth century, the varieties introduced in Trentino and the new cultivars produced by pioneer breeders have already embraced the principle of sustainable viticulture.

Future scenarios for viticultural climatic zoning in Europe

Climate is one of the main conditioning factors of winemaking. In this context, bioclimatic indices are a useful zoning tool, allowing the description of the suitability of a particular region

Enological and nutraceutical potential of some grape varieties tolerant to downy mildew and powdery mildew

AIM: Since 2012 the Veneto Region regulation (north-east Italy) allowed wine production using 20 hybrid grapevine varieties selected for their high tolerance to downy mildew and powdery mildew. Characterized by vigour, high grape productivity and low pesticide use, these varieties are suitable to develop sustainable viticulture in mountain areas located at medium altitudes.

Using the fraction of transpirable soil water to estimate grapevine leaf water potential: comparing the classical statistical regression approach to machine learning algorithms

Weather uncertainty is forcing Mediterranean winegrowers to adopt new irrigation strategies to cope with water scarcity while ensuring a sustainable yield and improved berry and wine quality standards. Therefore, more accurate and high-resolution monitoring of soil water content and vine water status is a major concern. Leaf water potential measured at pre-dawn (PD) is considered to be in equilibrium with soil water potential and is highly correlated with soil water content at the soil depth where roots extract water.