terclim by ICS banner
IVES 9 IVES Conference Series 9 Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Abstract

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role.  Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application.  We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.
Commercial products containing B. velezensis and T. harzianum formulated as wettable powders (WP) or suspension concentrates (SC) were used for viability tests and compared with the same microorganisms prepared as dispersion concentrates (DC) 1:10 ration in CITROFOL® AI. The formulations were subjected to a demanding storage test at 40°C for 24 weeks. Microbial viability was monitored by plate counting periodically.
B. velezensis showed a high overall robustness during storage. However, comparing liquid products, the cell viability in the SC formulation declined by approximately one order of magnitude more than in the DC formulation in CITROFOL® AI. T. harzianum generally was highly susceptible during storage. However, the cell viability after 24 weeks was two orders of magnitude higher when formulated as DC in CITROFOL® AI compared to the WP. Thus, CITROFOL® AI improved the shelf life of both microorganisms tested.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Teresa Berninger1, Carolin Stern1, Victoria Sevillano, Óscar González-López2*

1 Jungbunzlauer Ladenburg GmbH
2 University of La Rioja, Department of Food and Agriculture

Contact the author*

Keywords

Formulation, Viticulture, Citrate ester, Biocontrol, Biostimulant

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Antifungal and Laccase-Suppressing Activity of Phenolic Compounds and Their Oxidation Products on Grey Mold-Fungus Botrytis cinerea

Botrytis cinerea causes grey mold that results in severe problems for wine makers worldwide. Infected grapes lead to quality deterioration including formation of off-flavors or browning. The latter is caused by the enzyme laccase which is capable of oxidizing a wide range of phenolic compounds. Since the use of conventional pesticides is associated with many concerns of consumers and authorities regarding environmental and health related issues and may result in fungicide resistance, the development of green alternatives is gaining more attention.

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.

Sensory profile: a tool to characterize originality of wines produced without sulfites

A trend to reduce chemical inputs in wines exists, especially sulfur dioxide (SO2). This additive is widely used due to its antioxidant, antiseptic and antioxidasic properties. During without sulfites vinification, bioprotection by adding yeast on harvest could be a sulfites alternative. With extension of this wine market, sensory impact linked to sulfites absence and/or sulfites alternative should be evaluated. That’s what this approach proposes to do, focusing on sensory characteristics of wines produced with or without SO2 addition during the winemaking process. METHODS: Wines were elaborated from Merlot grapes of two maturity levels according to three modalities: SO2, without SO2 and bioprotection on harvest (mix of Torulaspora delbrueckii and Metschnikowia pulcherrima). SO2 modality was sulfited throughout the winemaking and aging processes whether other modalities received any addition. After two years of aging, sensory studies were carried out with a specific panel for one month. First, descriptors were generated to differentiate the wines, then panelists were trained on these specific descriptors for five sessions and finally wines sensory profiles were elaborated

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

La hiérarchisation des Coteaux du Languedoc: une application concrète du zonage vitivinicole

L’A.O.C. Coteaux du Languedoc est située dans le Sud de la France, dans la partie Ouest de la bordure méditerranéenne. Elle forme un vaste amphithéâtre largement ouvert sur la mer méditerranée. L’Appellation a été constituée en 1960 par le regroupement de 14 anciennes petites appellations d’origine représentant 55 communes éparpillées dans les départements de l’Aude, de l’Hérault et du Gard. Par la suite, plusieurs extensions successives ont conduit à un ensemble actuellement composé de 168 communes.