terclim by ICS banner
IVES 9 IVES Conference Series 9 Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Abstract

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role.  Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application.  We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.
Commercial products containing B. velezensis and T. harzianum formulated as wettable powders (WP) or suspension concentrates (SC) were used for viability tests and compared with the same microorganisms prepared as dispersion concentrates (DC) 1:10 ration in CITROFOL® AI. The formulations were subjected to a demanding storage test at 40°C for 24 weeks. Microbial viability was monitored by plate counting periodically.
B. velezensis showed a high overall robustness during storage. However, comparing liquid products, the cell viability in the SC formulation declined by approximately one order of magnitude more than in the DC formulation in CITROFOL® AI. T. harzianum generally was highly susceptible during storage. However, the cell viability after 24 weeks was two orders of magnitude higher when formulated as DC in CITROFOL® AI compared to the WP. Thus, CITROFOL® AI improved the shelf life of both microorganisms tested.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Teresa Berninger1, Carolin Stern1, Victoria Sevillano, Óscar González-López2*

1 Jungbunzlauer Ladenburg GmbH
2 University of La Rioja, Department of Food and Agriculture

Contact the author*

Keywords

Formulation, Viticulture, Citrate ester, Biocontrol, Biostimulant

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Aim: To investigate the possibility of utilising simultaneous measurements of absorbance-transmittance and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics, as a robust method that gives rapid results for classification of wines from different regions of South Australia according to their Geographical Indication (GI), and to gain insight into the effect of terroir on inter regional variation.

Postharvest elicitors and metabolic changes in wine grape berries

Wine grape berries respond to postharvest treatments with specific gaseous elicitors in terms of metabolic changes and composition. Short-term (3 days) high (30 KPa) CO2 treatment affects phenol compound concentration in skins of ‘Trebbiano toscano’ berries.

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest.

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.