terclim by ICS banner
IVES 9 IVES Conference Series 9 Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Abstract

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role.  Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application.  We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.
Commercial products containing B. velezensis and T. harzianum formulated as wettable powders (WP) or suspension concentrates (SC) were used for viability tests and compared with the same microorganisms prepared as dispersion concentrates (DC) 1:10 ration in CITROFOL® AI. The formulations were subjected to a demanding storage test at 40°C for 24 weeks. Microbial viability was monitored by plate counting periodically.
B. velezensis showed a high overall robustness during storage. However, comparing liquid products, the cell viability in the SC formulation declined by approximately one order of magnitude more than in the DC formulation in CITROFOL® AI. T. harzianum generally was highly susceptible during storage. However, the cell viability after 24 weeks was two orders of magnitude higher when formulated as DC in CITROFOL® AI compared to the WP. Thus, CITROFOL® AI improved the shelf life of both microorganisms tested.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Teresa Berninger1, Carolin Stern1, Victoria Sevillano, Óscar González-López2*

1 Jungbunzlauer Ladenburg GmbH
2 University of La Rioja, Department of Food and Agriculture

Contact the author*

Keywords

Formulation, Viticulture, Citrate ester, Biocontrol, Biostimulant

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

Aromatic complexity in Verdicchio wines: a case study

In this video recording of the IVES science meeting 2021, Fulvio Mattivi (Fondazione Edmund Mach, Centro Ricerca ed Innovazione, San Michele all’Adige, Italy) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.

La caracterización de los moscateles

Ya en 1964 GIOVANNI DALMASSO et alii describiendo el Moscato bianco (12) ponían de manifiesto la dificultad realmente ardua en descubrir “si no todas, por lo menos las más importantes variedades que llevan el nombre de Moscateles

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Investigating the carbon sequestration potential in vineyard soils–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard in a climate change scenario.