terclim by ICS banner
IVES 9 IVES Conference Series 9 Optimized protocol for high-quality RNA extraction from grape tissues using sorbitol pre-wash

Optimized protocol for high-quality RNA extraction from grape tissues using sorbitol pre-wash

Abstract

Obtaining high-quality RNA from grape tissues, including berry pulp, berry skins, stems, rachis, or roots, is challenging due to their composition, which includes polysaccharides, phenolic compounds, sugars, and organic acids that can negatively affect RNA extraction. For instance, polyphenols and other secondary metabolites can bind to RNA, making it difficult to extract a pure sample. Additionally, RNA can co-precipitate with polysaccharides, leading to lower extraction yield. Also, sugars and organic acids can interfere with the pH and ionic properties of the extraction buffer. To address these challenges, we optimized a protocol for RNA isolation from grape tissues. Although commercial kits can provide a rapid extraction, they were inefficient for these plant materials. Similarly, protocols that work well for other vegetal tissues were also inefficient and time-consuming on grape tissues. To overcome these limitations, we added a sorbitol pre-wash step to both a three-day long protocol based on LiCl precipitation and a commercial kit. Our results showed that the addition of a sorbitol pre-wash improved multiple parameters: the A260/280 absorbance ratio, integrity and quality (IQ), and RNA integrity number (RIN). Sorbitol played a crucial role in ensuring high-quality RNA extraction from grape tissues. It inhibits RNase, thereby preserving RNA integrity and stability. It also helps in disrupting cellular membranes, facilitating the release of RNA, and maintains the osmotic pressure through hypertonicity, which is beneficial to RNA extraction. By using sorbitol, commercial kits can be used to extract RNA from challenging grape tissues, leading to an efficient and time-saving procedure.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Annalisa Prencipe1, Antonella Salerno1,2, Marco Vendemia2, Carlo Bergamini2, Margherita D’Amico2, Lucia Rosaria Forleo2, Teodora Basile2, Maria Francesca Cardone2, Antonio Domenico Marsico2, Riccardo Velasco2, Mario Ventura1, Flavia Angela Maria Maggiolini2*

1 Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
2 Council for Agricultural Research and Economics – Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy

Contact the author*

Keywords

Vitis vinifera, RNA, sorbitol, extraction protocol

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Enhancing sustainability in winemaking: the role of PIWI in South Tyrol

The adoption of PIWI (Pilzwiderstandsfähige) grape cultivars, bred for resistance to fungal diseases, is a transformative step towards sustainable winemaking.

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality.

Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Estimation of the resistance of a wine against oxidation is of great importance for the wine. To that purpose, most of the commonly used chemical assays that are dedicated to estimate the antioxidant (or antiradical) capacity of a wine consist in measuring the capacity of the wine to reduce an oxidative compound or a stable radical.

The ability of wine yeasts fermenting by the addition of exogenous biotin

Research is focused on the increase of the field of obtaining the wine yeast, under physical and chemical conditions. Study of different influences on yeast production is very important for the promotion