terclim by ICS banner
IVES 9 IVES Conference Series 9 Optimized protocol for high-quality RNA extraction from grape tissues using sorbitol pre-wash

Optimized protocol for high-quality RNA extraction from grape tissues using sorbitol pre-wash

Abstract

Obtaining high-quality RNA from grape tissues, including berry pulp, berry skins, stems, rachis, or roots, is challenging due to their composition, which includes polysaccharides, phenolic compounds, sugars, and organic acids that can negatively affect RNA extraction. For instance, polyphenols and other secondary metabolites can bind to RNA, making it difficult to extract a pure sample. Additionally, RNA can co-precipitate with polysaccharides, leading to lower extraction yield. Also, sugars and organic acids can interfere with the pH and ionic properties of the extraction buffer. To address these challenges, we optimized a protocol for RNA isolation from grape tissues. Although commercial kits can provide a rapid extraction, they were inefficient for these plant materials. Similarly, protocols that work well for other vegetal tissues were also inefficient and time-consuming on grape tissues. To overcome these limitations, we added a sorbitol pre-wash step to both a three-day long protocol based on LiCl precipitation and a commercial kit. Our results showed that the addition of a sorbitol pre-wash improved multiple parameters: the A260/280 absorbance ratio, integrity and quality (IQ), and RNA integrity number (RIN). Sorbitol played a crucial role in ensuring high-quality RNA extraction from grape tissues. It inhibits RNase, thereby preserving RNA integrity and stability. It also helps in disrupting cellular membranes, facilitating the release of RNA, and maintains the osmotic pressure through hypertonicity, which is beneficial to RNA extraction. By using sorbitol, commercial kits can be used to extract RNA from challenging grape tissues, leading to an efficient and time-saving procedure.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Annalisa Prencipe1, Antonella Salerno1,2, Marco Vendemia2, Carlo Bergamini2, Margherita D’Amico2, Lucia Rosaria Forleo2, Teodora Basile2, Maria Francesca Cardone2, Antonio Domenico Marsico2, Riccardo Velasco2, Mario Ventura1, Flavia Angela Maria Maggiolini2*

1 Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
2 Council for Agricultural Research and Economics – Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148-70010 Turi (Ba), Italy

Contact the author*

Keywords

Vitis vinifera, RNA, sorbitol, extraction protocol

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Bio-acidification of wines by Lachancea thermotolerans

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Interaction among grapevine cultivars (Sangiovese, Cabernet-Sauvignon and Merlot) and site of cultivation in Bolgheri (Tuscany)

Different “landscape unit” have been identified in Bolgheri area (a viticultural appellation in the Tirrenian coast of Tuscany) by the aid of pedological, landscape and agronomic observations in the 1992-1993 period. In all cultivar (Sangiovese, Cabernet Sauvignon and Merlot) x landscape unit combinations, experimental plots were chosen in homogeneous vineyards, single cordon trained (about 3300-4500 vines/hectare). Grape maturation was studied by weekly samples of berries from veraison to vintage in the 1992-1995 period. At harvest yield and must composition traits were measured and, from the most représentative plots, sixty kilograms of grapes were harvested each year and vinified according to a standardised scheme. Wines were evaluated by standard chemical and sensory analyses.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

Oxygen transfer through cork stoppers

During wine conservation in a bottle, the control of oxygen transfer from the outside environment to the wine inside the bottle is a key parameter that determines the wine quality. Many other factors can also influence the evolution of wine during postbottling aging,

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.