terclim by ICS banner
IVES 9 IVES Conference Series 9 Optimization of in vitro establishment of grapevine varieties for fast micropropagation 

Optimization of in vitro establishment of grapevine varieties for fast micropropagation 

Abstract

Micropropagation is an important alternative to conventional methods of plant propagation. The objective of this study was to optimize a protocol for in vitro micropropagation of selected grapevine hybrids (H19 and H20) that are included in our breeding program. For the sprouting initiation experiment, nodal cuttings with only one axillary bud from two hybrids were separated, disinfected, and cultivated in 50% Murashige Skoog nutrient medium (½ MS) and Woody Plant Medium (WPM), adding 4.4 µM benzyladenine (BA) in both mediums. To optimize root induction, the sprouts obtained were cultivated in ½ MS and WPM, testing doses of 2, 4 and 8 µM Indole Acetic Acid (IAA) respectively. According to the results, the highest percentage of sprouted buds was obtained in ½ MS + 4.4 µM BA for H19 and H20 (79 and 82%, respectively) at 14 days. At 28 days, the percentage was lower in all of cases. Regarding the rooted sprouts, the highest percentage obtained was 52% in the WPM medium for H19 and 46% in the WPM + 4µM IAA medium for H20 at 14 days. At 28 days, however, the highest percentage of rooted shoots was in ½ MS + 2µM AIA medium for H19 and H20 (89 and 93%, respectively). In conclusion, the best way to micropropagate these hybrids in a short period of time is ½ MS + 4.4 µM BA and WPM for H19, and ½ MS + 4.4µM BA and WPM + 4µM IAA for H20.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

María Isabel Serrano Sánchez1*, Manuel Tornel Martínez1

1 Instituto Murciano de Desarrollo Agrario y Medioambiental (IMIDA). Equipo de Mejora de Uva de Mesa. C/ Mayor, s/n, 30150 Alberca Las Torres, Murcia (Spain)

Contact the author*

Keywords

micropropagation, rooting, in vitro culture, IAA, BA

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Right after serving a sparkling wine into a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds (VOCs) in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1].

1H NMR spectroscopy data to discriminate Petit verdot wines from three different soil types in the São Francisco valley, Brazil

Tropical wines have been produced in the São Francisco river Valley thirty years ago, in the Northeast of Brazil. The main grape cultivar used for red tropical wines is ‘Syrah’, but wines have presented fast evolution, if they were made in the first or second semester, due to the high values of pH in grapes and wines and high climate temperatures.

Climate, grapes, and wine: structure and suitability in a variable and changing climate

Climate is a pervasive factor in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3

Improved vineyard sampling efficiency using aerial NDVI

Random sampling is often considered to be the best protocol for fruit sampling because it is assumed to produce a sample that best represents the vineyard population.