terclim by ICS banner
IVES 9 IVES Conference Series 9 Optimization of in vitro establishment of grapevine varieties for fast micropropagation 

Optimization of in vitro establishment of grapevine varieties for fast micropropagation 

Abstract

Micropropagation is an important alternative to conventional methods of plant propagation. The objective of this study was to optimize a protocol for in vitro micropropagation of selected grapevine hybrids (H19 and H20) that are included in our breeding program. For the sprouting initiation experiment, nodal cuttings with only one axillary bud from two hybrids were separated, disinfected, and cultivated in 50% Murashige Skoog nutrient medium (½ MS) and Woody Plant Medium (WPM), adding 4.4 µM benzyladenine (BA) in both mediums. To optimize root induction, the sprouts obtained were cultivated in ½ MS and WPM, testing doses of 2, 4 and 8 µM Indole Acetic Acid (IAA) respectively. According to the results, the highest percentage of sprouted buds was obtained in ½ MS + 4.4 µM BA for H19 and H20 (79 and 82%, respectively) at 14 days. At 28 days, the percentage was lower in all of cases. Regarding the rooted sprouts, the highest percentage obtained was 52% in the WPM medium for H19 and 46% in the WPM + 4µM IAA medium for H20 at 14 days. At 28 days, however, the highest percentage of rooted shoots was in ½ MS + 2µM AIA medium for H19 and H20 (89 and 93%, respectively). In conclusion, the best way to micropropagate these hybrids in a short period of time is ½ MS + 4.4 µM BA and WPM for H19, and ½ MS + 4.4µM BA and WPM + 4µM IAA for H20.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

María Isabel Serrano Sánchez1*, Manuel Tornel Martínez1

1 Instituto Murciano de Desarrollo Agrario y Medioambiental (IMIDA). Equipo de Mejora de Uva de Mesa. C/ Mayor, s/n, 30150 Alberca Las Torres, Murcia (Spain)

Contact the author*

Keywords

micropropagation, rooting, in vitro culture, IAA, BA

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.

Proposal of a procedure for sensory characterisation of wines from different subareas of a same D.O.C. (V.Q.P.R.D.)

In the course of the present work, which is the first part of a study on the “characterization of Barbera dell’Oltrepo Pavese D.O.C.” 30 wines Barbera from 1993 vintage have been compared only regarding their sensory characteristics. An unstructured scale card, composed by 15 descriptors have been used.

Identification of key-odorants in Sauternes Wines

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD).

Arinto clones tolerant to climate change: in depth transcriptomic study of tolerant and sensitive genotypes

Drought and heat waves deriving from climate change have been affecting grapevine plants and altering wine characteristics in the past years, and effects are expected to get worst. Innovative approaches to address this problem have been undertaken in several varieties, that consist in exploring intravarietal variability to identify genotypes that are tolerant to abiotic stress. Such is the case of the variety Arinto, where an experimental population of 165 clones installed according to a resolvable row-column design with 6 replicates, was scanned for several parameters, including surface leaf temperature (SLT). Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability.