terclim by ICS banner
IVES 9 IVES Conference Series 9 Optimization of in vitro establishment of grapevine varieties for fast micropropagation 

Optimization of in vitro establishment of grapevine varieties for fast micropropagation 

Abstract

Micropropagation is an important alternative to conventional methods of plant propagation. The objective of this study was to optimize a protocol for in vitro micropropagation of selected grapevine hybrids (H19 and H20) that are included in our breeding program. For the sprouting initiation experiment, nodal cuttings with only one axillary bud from two hybrids were separated, disinfected, and cultivated in 50% Murashige Skoog nutrient medium (½ MS) and Woody Plant Medium (WPM), adding 4.4 µM benzyladenine (BA) in both mediums. To optimize root induction, the sprouts obtained were cultivated in ½ MS and WPM, testing doses of 2, 4 and 8 µM Indole Acetic Acid (IAA) respectively. According to the results, the highest percentage of sprouted buds was obtained in ½ MS + 4.4 µM BA for H19 and H20 (79 and 82%, respectively) at 14 days. At 28 days, the percentage was lower in all of cases. Regarding the rooted sprouts, the highest percentage obtained was 52% in the WPM medium for H19 and 46% in the WPM + 4µM IAA medium for H20 at 14 days. At 28 days, however, the highest percentage of rooted shoots was in ½ MS + 2µM AIA medium for H19 and H20 (89 and 93%, respectively). In conclusion, the best way to micropropagate these hybrids in a short period of time is ½ MS + 4.4 µM BA and WPM for H19, and ½ MS + 4.4µM BA and WPM + 4µM IAA for H20.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

María Isabel Serrano Sánchez1*, Manuel Tornel Martínez1

1 Instituto Murciano de Desarrollo Agrario y Medioambiental (IMIDA). Equipo de Mejora de Uva de Mesa. C/ Mayor, s/n, 30150 Alberca Las Torres, Murcia (Spain)

Contact the author*

Keywords

micropropagation, rooting, in vitro culture, IAA, BA

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Preliminary studies on polyphenol assessment by Fourier transform-near infrared spectroscopy (FT-NIR) in grape berries

NIR spectroscopy has widely been tested in viticulture as powerful alternative to traditional analytical methods in the field of quality evaluation. NIR instruments have been used for assessing must and wine quality features in several works, but little information regarding their application on whole berries for polyphenol determination is available.

From grapes to sparking wines: Aromas evaluation in a vine-spacing

Aim: Wine aromatic profile is a combination of viticulture and oenological practices and it is related to character, quality, and consumer acceptance. Based on the competition between soil capacity and canopy development, and on the potential to produce sparkling wines at Caldas, in the south region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1.100m), the aim of this work was the evaluation of the development of aromas (secondary metabolites) from grapes to sparkling wines in a vine-spacing experiment and whether the distance between the vines can influence the aromatic profile of the sparkling wines (final product). 

Interaction Between Armenian Clay-based Ceramic and Model Wine

Clay-based ceramic vessels (jars, pyhtoi, etc.) for wine fermentation and aging processes have been used in several cultures for millennia. This know-how still in practice in several countries of the Armenian highland is gaining worldwide in curiosity, popularity, and interest. Ceramic pots are famous among traditional winemakers for their benefits such as temperature regulation, natural cooling system, favorable oxygen exchange, and impact on pH, which are different from those of stainless steel, wood barrels, or concrete.

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].