terclim by ICS banner
IVES 9 IVES Conference Series 9 Optimization of in vitro establishment of grapevine varieties for fast micropropagation 

Optimization of in vitro establishment of grapevine varieties for fast micropropagation 

Abstract

Micropropagation is an important alternative to conventional methods of plant propagation. The objective of this study was to optimize a protocol for in vitro micropropagation of selected grapevine hybrids (H19 and H20) that are included in our breeding program. For the sprouting initiation experiment, nodal cuttings with only one axillary bud from two hybrids were separated, disinfected, and cultivated in 50% Murashige Skoog nutrient medium (½ MS) and Woody Plant Medium (WPM), adding 4.4 µM benzyladenine (BA) in both mediums. To optimize root induction, the sprouts obtained were cultivated in ½ MS and WPM, testing doses of 2, 4 and 8 µM Indole Acetic Acid (IAA) respectively. According to the results, the highest percentage of sprouted buds was obtained in ½ MS + 4.4 µM BA for H19 and H20 (79 and 82%, respectively) at 14 days. At 28 days, the percentage was lower in all of cases. Regarding the rooted sprouts, the highest percentage obtained was 52% in the WPM medium for H19 and 46% in the WPM + 4µM IAA medium for H20 at 14 days. At 28 days, however, the highest percentage of rooted shoots was in ½ MS + 2µM AIA medium for H19 and H20 (89 and 93%, respectively). In conclusion, the best way to micropropagate these hybrids in a short period of time is ½ MS + 4.4 µM BA and WPM for H19, and ½ MS + 4.4µM BA and WPM + 4µM IAA for H20.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

María Isabel Serrano Sánchez1*, Manuel Tornel Martínez1

1 Instituto Murciano de Desarrollo Agrario y Medioambiental (IMIDA). Equipo de Mejora de Uva de Mesa. C/ Mayor, s/n, 30150 Alberca Las Torres, Murcia (Spain)

Contact the author*

Keywords

micropropagation, rooting, in vitro culture, IAA, BA

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

How to reduce SO2 additions in wine with the aid of non-conventional yeasts

Among the factors that influence the sensory quality, style, safety, sustainability, and sense of place of a wine, the contributions of microbial biodiversity are widely becoming more recognized. Throughout winemaking, multiple biochemical reactions are performed by a myriad of different microorganisms interacting in many ways.

Defoliation timing impacts berry secondary metabolites and sunburn damage

Sunburn is a physiological disorder that leads to yield and quality losses in a range of fruits such as grapes and apples. It affects the visual appearance and the composition of the fruit, leading to irreversible changes and ultimately, cell death in extreme situations.

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves.

Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Exposure to solar radiation affects berry composition through photomorphogenesis or changes in temperature. Flavonol synthesis is upregulated by UV‐B radiation

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.